Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=11/2, a2>=11/2 > For fixed z and a1=11/2, a2=11/2, b1>=-11/2 > For fixed z and a1=11/2, a2=11/2, b1=-5/2





http://functions.wolfram.com/07.25.03.anot.01









  


  










Input Form





HypergeometricPFQ[{11/2, 11/2}, {-(5/2), 3}, z] == -((1/13395375) (16 E^(z/2) (-850500 + 3765825 z - 13343400 z^2 + 94324230 z^3 + 495371520 z^4 + 613811520 z^5 + 323688960 z^6 + 85691520 z^7 + 12125184 z^8 + 919296 z^9 + 34816 z^10 + 512 z^11) BesselI[0, z/2])) - (1/(13395375 z)) (4 E^(z/2) (212625 + 472500 z - 4573800 z^2 + 15853320 z^3 - 60936120 z^4 + 737936640 z^5 + 1554577920 z^6 + 1014750720 z^7 + 299379456 z^8 + 45026304 z^9 + 3540992 z^10 + 137216 z^11 + 2048 z^12) BesselI[1, z/2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "3"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", "13395375"], RowBox[List["(", RowBox[List["16", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "850500"]], "+", RowBox[List["3765825", " ", "z"]], "-", RowBox[List["13343400", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["94324230", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["495371520", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["613811520", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["323688960", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["85691520", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["12125184", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["919296", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["34816", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "11"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["13395375", " ", "z"]]], RowBox[List["(", RowBox[List["4", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", RowBox[List["(", RowBox[List["212625", "+", RowBox[List["472500", " ", "z"]], "-", RowBox[List["4573800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15853320", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["60936120", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["737936640", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1554577920", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1014750720", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["299379456", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["45026304", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["3540992", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["137216", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;3&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 13395375 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 34816 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 919296 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12125184 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 85691520 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 323688960 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 613811520 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 495371520 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 94324230 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13343400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3765825 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 850500 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 13395375 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2048 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 137216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3540992 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45026304 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 299379456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1014750720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1554577920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 737936640 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 60936120 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15853320 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4573800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 472500 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 212625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> 3 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 13395375 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 34816 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 919296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12125184 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 85691520 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 323688960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 613811520 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 495371520 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 94324230 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13343400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3765825 </cn> <ci> z </ci> </apply> <cn type='integer'> -850500 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 0 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 13395375 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 137216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3540992 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45026304 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 299379456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1014750720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1554577920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 737936640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60936120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15853320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4573800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 472500 </cn> <ci> z </ci> </apply> <cn type='integer'> 212625 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "3"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["16", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "850500"]], "+", RowBox[List["3765825", " ", "z"]], "-", RowBox[List["13343400", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["94324230", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["495371520", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["613811520", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["323688960", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["85691520", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["12125184", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["919296", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["34816", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "11"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "13395375"]]], "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", RowBox[List["(", RowBox[List["212625", "+", RowBox[List["472500", " ", "z"]], "-", RowBox[List["4573800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15853320", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["60936120", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["737936640", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1554577920", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1014750720", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["299379456", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["45026304", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["3540992", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["137216", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]], RowBox[List["13395375", " ", "z"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02