|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.03.anto.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{11/2, 6}, {-(5/2), -(5/2)}, z] ==
(1/3189375) (3189375 + 16839900 z + 170270100 z^2 + 13621608000 z^3 +
830334304800 z^4 + 4847476233600 z^5 + 9223316968320 z^6 +
8103665710080 z^7 + 3870381024000 z^8 + 1099400924160 z^9 +
195603448320 z^10 + 22400504832 z^11 + 1663752048 z^12 + 79100160 z^13 +
2307328 z^14 + 37376 z^15 + 256 z^16) +
(1/3189375) (8 E^z Sqrt[Pi] (13232419200 z^(7/2) + 238183545600 z^(9/2) +
955140076800 z^(11/2) + 1518304435200 z^(13/2) +
1207304028000 z^(15/2) + 543008370240 z^(17/2) + 148470325920 z^(19/2) +
25757602560 z^(21/2) + 2899443465 z^(23/2) + 212774250 z^(25/2) +
10029432 z^(27/2) + 290736 z^(29/2) + 4688 z^(31/2) + 32 z^(33/2))
Erf[Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", "6"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "3189375"], RowBox[List["(", RowBox[List["3189375", "+", RowBox[List["16839900", " ", "z"]], "+", RowBox[List["170270100", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["13621608000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["830334304800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["4847476233600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["9223316968320", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["8103665710080", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3870381024000", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["1099400924160", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["195603448320", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["22400504832", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["1663752048", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["79100160", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["2307328", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["37376", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "16"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "3189375"], RowBox[List["(", RowBox[List["8", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["13232419200", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["238183545600", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["955140076800", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["1518304435200", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["1207304028000", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["543008370240", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["148470325920", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["25757602560", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["2899443465", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["212774250", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["10029432", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["290736", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["4688", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 3189375 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 256 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 37376 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2307328 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 79100160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1663752048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 22400504832 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 195603448320 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1099400924160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3870381024000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8103665710080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9223316968320 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4847476233600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 830334304800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13621608000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 170270100 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16839900 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3189375 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3189375 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 33 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4688 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 31 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 290736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 29 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10029432 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 212774250 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2899443465 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25757602560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 148470325920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 543008370240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1207304028000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1518304435200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 955140076800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 238183545600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13232419200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='integer'> 6 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 3189375 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 37376 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2307328 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 79100160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1663752048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 22400504832 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 195603448320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1099400924160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3870381024000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8103665710080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9223316968320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4847476233600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 830334304800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13621608000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 170270100 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16839900 </cn> <ci> z </ci> </apply> <cn type='integer'> 3189375 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 3189375 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 33 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4688 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 31 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 290736 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 29 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10029432 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 212774250 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2899443465 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25757602560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 148470325920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 543008370240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1207304028000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1518304435200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 955140076800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 238183545600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13232419200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", "6"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["3189375", "+", RowBox[List["16839900", " ", "z"]], "+", RowBox[List["170270100", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["13621608000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["830334304800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["4847476233600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["9223316968320", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["8103665710080", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3870381024000", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["1099400924160", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["195603448320", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["22400504832", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["1663752048", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["79100160", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["2307328", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["37376", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "16"]]]]], "3189375"], "+", FractionBox[RowBox[List["8", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["13232419200", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["238183545600", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["955140076800", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["1518304435200", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["1207304028000", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["543008370240", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["148470325920", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["25757602560", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["2899443465", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["212774250", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["10029432", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["290736", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["4688", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], "3189375"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|