|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.06.0010.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 1] + n},
{Subscript[b, 1], Subscript[b, 2]}, z] \[Proportional]
((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/(Gamma[Subscript[a, 1]]
Gamma[Subscript[a, 1] + n])) z^\[Chi] E^z Sum[Subscript[c, k]/z^k,
{k, 0, Infinity}] + (((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/
(Gamma[Subscript[a, 1] + n] Gamma[Subscript[b, 1] - Subscript[a, 1]]
Gamma[Subscript[b, 2] - Subscript[a, 1]]))
Sum[((Pochhammer[Subscript[a, 1], n + k]/(k! (k + n)!))
Pochhammer[1 - Subscript[b, 1] + Subscript[a, 1], n + k]
Pochhammer[1 - Subscript[b, 2] + Subscript[a, 1], n + k]
(PolyGamma[1 + k] + PolyGamma[1 + k + n] -
PolyGamma[k + n + Subscript[a, 1]] - PolyGamma[
-k - n - Subscript[a, 1] + Subscript[b, 1]] -
PolyGamma[-k - n - Subscript[a, 1] + Subscript[b, 2]]))/(-z)^k,
{k, 0, Infinity}])/(z^n (-z)^Subscript[a, 1]) +
(((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/
(n! Gamma[Subscript[a, 1]] Gamma[Subscript[b, 1] - Subscript[a, 1] - n]
Gamma[Subscript[b, 2] - Subscript[a, 1] - n])) Log[-z]
HypergeometricPFQ[{Subscript[a, 1] + n, 1 - Subscript[b, 1] +
Subscript[a, 1] + n, 1 - Subscript[b, 2] + Subscript[a, 1] + n},
{n + 1}, -(1/z)])/(z^n (-z)^Subscript[a, 1]) +
(((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/
Gamma[Subscript[a, 1] + n])
Sum[(Pochhammer[Subscript[a, 1], k] Gamma[n - k])/
(Gamma[Subscript[b, 1] - Subscript[a, 1] - k]
Gamma[Subscript[b, 2] - Subscript[a, 1] - k] k!)/z^k,
{k, 0, n - 1}])/(-z)^Subscript[a, 1] /;
(Abs[z] -> Infinity) && Element[n, Integers] && n >= 0 &&
\[Chi] == 2 Subscript[a, 1] + n - Subscript[b, 1] - Subscript[b, 2] &&
Subscript[c, 0] == 1 && Subscript[c, 1] == (Subscript[A, 2] - 1) \[Chi] +
\[GothicCapitalB] - \[GothicCapitalA] &&
Subscript[c, k] == (1/k) ((1 - Subscript[B, 2] + 4 Subscript[a, 1] +
2 Subscript[a, 1]^2 + 2 n + 2 Subscript[a, 1] n + n^2 -
Subscript[A, 2] Subscript[B, 2] + \[GothicCapitalA] +
\[GothicCapitalB] + (2 Subscript[B, 2] - 3 (Subscript[A, 2] + 1)) k +
2 k^2) Subscript[c, k - 1] - (k - Subscript[A, 2] + Subscript[b, 1] -
1) (k - Subscript[A, 2] + Subscript[b, 2] - 1) (k - \[Chi] - 2)
Subscript[c, k - 2]) && Subscript[A, 2] == 2 Subscript[a, 1] + n &&
Subscript[B, 2] == Subscript[b, 1] + Subscript[b, 2] &&
\[GothicCapitalA] == Subscript[a, 1] (Subscript[a, 1] + n) &&
\[GothicCapitalB] == Subscript[b, 1] Subscript[b, 2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", RowBox[List[SubscriptBox["a", "1"], "+", "n"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "+", "n"]], "]"]]]]], SuperscriptBox["z", "\[Chi]"], SuperscriptBox["\[ExponentialE]", "z"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["c", "k"], SuperscriptBox["z", RowBox[List["-", "k"]]]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "+", "n"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"]]], "]"]]]]], SuperscriptBox["z", RowBox[List["-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "1"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "1"], ",", RowBox[List["n", "+", "k"]]]], "]"]], RowBox[List[RowBox[List["k", "!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "n"]], ")"]], "!"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["a", "1"]]], ",", RowBox[List["n", "+", "k"]]]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "2"], "+", SubscriptBox["a", "1"]]], ",", RowBox[List["n", "+", "k"]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", "n"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "n", "+", SubscriptBox["a", "1"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "k"]], "-", "n", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "1"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "k"]], "-", "n", "-", SubscriptBox["a", "1"], "+", SubscriptBox["b", "2"]]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "k"]]]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "1"], "-", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"], "-", "n"]], "]"]]]]], SuperscriptBox["z", RowBox[List["-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "1"]]]], " ", RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "+", "n"]], ",", RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["a", "1"], "+", "n"]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"], "+", SubscriptBox["a", "1"], "+", "n"]]]], "}"]], ",", RowBox[List["{", RowBox[List["n", "+", "1"]], "}"]], ",", RowBox[List["-", FractionBox["1", "z"]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "+", "n"]], "]"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "1"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "1"], ",", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["n", "-", "k"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "1"], "-", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"], "-", "k"]], "]"]], RowBox[List["k", "!"]]]]], SuperscriptBox["z", RowBox[List["-", "k"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[RowBox[List["2", SubscriptBox["a", "1"]]], "+", "n", "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]]]], "\[And]", RowBox[List[SubscriptBox["c", "0"], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["A", "2"], "-", "1"]], ")"]], "\[Chi]"]], "+", "\[GothicCapitalB]", "-", "\[GothicCapitalA]"]]]], "\[And]", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", RowBox[List[FractionBox["1", "k"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["B", "2"], "+", RowBox[List["4", " ", SubscriptBox["a", "1"]]], "+", RowBox[List["2", SubsuperscriptBox["a", "1", "2"]]], "+", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", SubscriptBox["a", "1"], "n"]], "+", SuperscriptBox["n", "2"], "-", RowBox[List[SubscriptBox["A", "2"], SubscriptBox["B", "2"]]], "+", "\[GothicCapitalA]", "+", "\[GothicCapitalB]", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["B", "2"]]], "-", RowBox[List["3", " ", RowBox[List["(", RowBox[List[SubscriptBox["A", "2"], "+", "1"]], ")"]]]]]], ")"]], " ", "k"]], "+", RowBox[List["2", " ", SuperscriptBox["k", "2"]]]]], ")"]], " ", SubscriptBox["c", RowBox[List["k", "-", "1"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["k", "-", SubscriptBox["A", "2"], "+", SubscriptBox["b", "1"], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", SubscriptBox["A", "2"], "+", SubscriptBox["b", "2"], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", "\[Chi]", "-", "2"]], ")"]], " ", SubscriptBox["c", RowBox[List["k", "-", "2"]]]]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", RowBox[List[RowBox[List["2", SubscriptBox["a", "1"]]], "+", "n"]]]], "\[And]", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"]]]]], "\[And]", RowBox[List["\[GothicCapitalA]", "\[Equal]", RowBox[List[SubscriptBox["a", "1"], RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", "n"]], ")"]]]]]], "\[And]", RowBox[List["\[GothicCapitalB]", "\[Equal]", RowBox[List[SubscriptBox["b", "1"], SubscriptBox["b", "2"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", SubscriptBox["a", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mi> log </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["n", "+", SubscriptBox["a", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["n", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", "z"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "1"], ")"]], RowBox[List["k", "+", "n"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "+", "1"]], ")"]], RowBox[List["k", "+", "n"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"], "+", "1"]], ")"]], RowBox[List["k", "+", "n"]]], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> χ </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "1"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> χ </mi> <mo> ⩵ </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> c </mi> <mn> 0 </mn> </msub> <mo> ⩵ </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <mrow> <mi> 𝔅 </mi> <mo> - </mo> <mi> 𝔄 </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> χ </mi> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> k </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> B </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mi> 𝔄 </mi> <mo> + </mo> <mi> 𝔅 </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> B </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> χ </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> 𝔄 </mi> <mo> ⩵ </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> 𝔅 </mi> <mo> ⩵ </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> log </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <ci> χ </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> <apply> <eq /> <ci> χ </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> 𝔅 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> 𝔄 </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <ci> χ </ci> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> 𝔄 </ci> <ci> 𝔅 </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> χ </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> 𝔄 </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <ci> 𝔅 </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", RowBox[List[SubscriptBox["a_", "1"], "+", "n_"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox["z", "\[Chi]"], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["c", "k"], " ", SuperscriptBox["z", RowBox[List["-", "k"]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "+", "n"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["aa", "1"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "1"], ",", RowBox[List["n", "+", "k"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", SubscriptBox["bb", "1"], "+", SubscriptBox["aa", "1"]]], ",", RowBox[List["n", "+", "k"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", SubscriptBox["bb", "2"], "+", SubscriptBox["aa", "1"]]], ",", RowBox[List["n", "+", "k"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", "n"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "n", "+", SubscriptBox["aa", "1"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "k"]], "-", "n", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "1"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "k"]], "-", "n", "-", SubscriptBox["aa", "1"], "+", SubscriptBox["bb", "2"]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "k"]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "n"]], ")"]], "!"]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "+", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"]]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["aa", "1"]]]], " ", RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "+", "n"]], ",", RowBox[List["1", "-", SubscriptBox["bb", "1"], "+", SubscriptBox["aa", "1"], "+", "n"]], ",", RowBox[List["1", "-", SubscriptBox["bb", "2"], "+", SubscriptBox["aa", "1"], "+", "n"]]]], "}"]], ",", RowBox[List["{", RowBox[List["n", "+", "1"]], "}"]], ",", RowBox[List["-", FractionBox["1", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "1"], "-", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"], "-", "n"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["aa", "1"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "1"], ",", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["n", "-", "k"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "k"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "1"], "-", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"], "-", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "+", "n"]], "]"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[RowBox[List["2", " ", SubscriptBox["aa", "1"]]], "+", "n", "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]]]], "&&", RowBox[List[SubscriptBox["c", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["A", "2"], "-", "1"]], ")"]], " ", "\[Chi]"]], "+", "\[GothicCapitalB]", "-", "\[GothicCapitalA]"]]]], "&&", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["B", "2"], "+", RowBox[List["4", " ", SubscriptBox["aa", "1"]]], "+", RowBox[List["2", " ", SubsuperscriptBox["aa", "1", "2"]]], "+", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", SubscriptBox["aa", "1"], " ", "n"]], "+", SuperscriptBox["n", "2"], "-", RowBox[List[SubscriptBox["A", "2"], " ", SubscriptBox["B", "2"]]], "+", "\[GothicCapitalA]", "+", "\[GothicCapitalB]", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["B", "2"]]], "-", RowBox[List["3", " ", RowBox[List["(", RowBox[List[SubscriptBox["A", "2"], "+", "1"]], ")"]]]]]], ")"]], " ", "k"]], "+", RowBox[List["2", " ", SuperscriptBox["k", "2"]]]]], ")"]], " ", SubscriptBox["c", RowBox[List["k", "-", "1"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["k", "-", SubscriptBox["A", "2"], "+", SubscriptBox["bb", "1"], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", SubscriptBox["A", "2"], "+", SubscriptBox["bb", "2"], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", "\[Chi]", "-", "2"]], ")"]], " ", SubscriptBox["c", RowBox[List["k", "-", "2"]]]]]]], "k"]]], "&&", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", RowBox[List[RowBox[List["2", " ", SubscriptBox["aa", "1"]]], "+", "n"]]]], "&&", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", RowBox[List[SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"]]]]], "&&", RowBox[List["\[GothicCapitalA]", "\[Equal]", RowBox[List[SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List[SubscriptBox["aa", "1"], "+", "n"]], ")"]]]]]], "&&", RowBox[List["\[GothicCapitalB]", "\[Equal]", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "2"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|