  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.25.13.0002.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    z^2 Derivative[3][w][z] + (Subscript[b, 1] + Subscript[b, 2] + 1 - z) z 
    Derivative[2][w][z] + (Subscript[b, 1] Subscript[b, 2] - 
     z (Subscript[a, 1] + Subscript[a, 2] + 1)) Derivative[1][w][z] - 
   Subscript[a, 1] Subscript[a, 2] w[z] == 0 /; 
 w[z] == Subscript[c, 1] HypergeometricPFQRegularized[
     {Subscript[a, 1], Subscript[a, 2]}, {Subscript[b, 1], Subscript[b, 2]}, 
     z] + Subscript[c, 2] 
    (MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]}, {}}, 
      {{0, 1 - Subscript[b, 1]}, {1 - Subscript[b, 2]}}, z] + 
     MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]}, {}}, 
      {{0, 1 - Subscript[b, 2]}, {1 - Subscript[b, 1]}}, z]) + 
   Subscript[c, 3] MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]}, {}}, 
     {{0, 1 - Subscript[b, 1], 1 - Subscript[b, 2]}, {}}, -z] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", "1", "-", "z"]], ")"]], " ", "z", " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["b", "1"], " ", SubscriptBox["b", "2"]]], "-", RowBox[List["z", " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", "1"]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", "z"]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", "z"]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mn> 0 </mn>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <msub>  <mi> c </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox[OverscriptBox["F", "~"], "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 2 </mn>  </msub>  <mo> ( </mo>  <mrow>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  <mo> + </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 3 </mn>  </msub>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["3", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["-", "z"]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </list>  <list>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  </apply>  <apply>  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> MeijerG </ci>  <list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </list>  <list />  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </list>  </list>  <ci> z </ci>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </list>  <list />  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </list>  </list>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </list>  <list />  </list>  <list>  <list>  <cn type='integer'> 0 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </list>  <list />  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "2"], "+", "1", "-", "z_"]], ")"]], " ", "z_", " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["b_", "1"], " ", SubscriptBox["b_", "2"]]], "-", RowBox[List["z_", " ", RowBox[List["(", RowBox[List[SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", "1"]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "2"], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", "z"]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", "z"]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |