|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.13.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z^3 Derivative[3][w][z] + (3 - 3 s - r (2 + a z^r) +
r (Subscript[b, 1] + Subscript[b, 2])) z^2 Derivative[2][w][z] +
(1 + r^2 + 3 (-1 + s) s + r (-1 + 2 s) (2 + a z^r) -
a r^2 z^r Subscript[a, 1] - r (a r z^r Subscript[a, 2] +
(-1 + r + 2 s) Subscript[b, 2] + Subscript[b, 1]
(-1 + r + 2 s - r Subscript[b, 2]))) z Derivative[1][w][z] +
((-a) r z^r (-s + r Subscript[a, 1]) (-s + r Subscript[a, 2]) -
s (r + s - r Subscript[b, 1]) (r + s - r Subscript[b, 2])) w[z] == 0 /;
w[z] == Subscript[c, 1] z^s HypergeometricPFQRegularized[
{Subscript[a, 1], Subscript[a, 2]}, {Subscript[b, 1], Subscript[b, 2]},
a z^r] + Subscript[c, 2] z^s
(MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]}, {}},
{{0, 1 - Subscript[b, 1]}, {1 - Subscript[b, 2]}}, a z^r] +
MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]}, {}},
{{0, 1 - Subscript[b, 2]}, {1 - Subscript[b, 1]}}, a z^r]) +
Subscript[c, 3] z^s MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]},
{}}, {{0, 1 - Subscript[b, 1], 1 - Subscript[b, 2]}, {}}, (-a) z^r]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["z", "3"], RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "s"]], "-", RowBox[List["r", " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]]]], "+", RowBox[List["r", " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"]]], ")"]]]]]], ")"]], SuperscriptBox["z", "2"], RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["r", "2"], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "s"]], ")"]], " ", "s"]], "+", RowBox[List["r", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], ")"]]]], "-", RowBox[List["a", " ", SuperscriptBox["r", "2"], " ", SuperscriptBox["z", "r"], " ", SubscriptBox["a", "1"]]], "-", RowBox[List["r", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", "r", " ", SuperscriptBox["z", "r"], " ", SubscriptBox["a", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SubscriptBox["b", "2"]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]], "-", RowBox[List["r", " ", SubscriptBox["b", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", "z", " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "r", " ", SuperscriptBox["z", "r"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "s"]], "+", RowBox[List["r", " ", SubscriptBox["a", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "s"]], "+", RowBox[List["r", " ", SubscriptBox["a", "2"]]]]], ")"]]]], "-", RowBox[List["s", " ", RowBox[List["(", RowBox[List["r", "+", "s", "-", RowBox[List["r", " ", SubscriptBox["b", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["r", "+", "s", "-", RowBox[List["r", " ", SubscriptBox["b", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SuperscriptBox["z", "s"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SuperscriptBox["z", "s"], RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "3"], SuperscriptBox["z", "s"], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <msup> <mi> r </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> r </mi> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> r </mi> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> - </mo> <mrow> <mi> s </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox[OverscriptBox["F", "~"], "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List["a", " ", SuperscriptBox["z", "r"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ( </mo> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["a", " ", SuperscriptBox["z", "r"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["a", " ", SuperscriptBox["z", "r"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["3", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "r"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <ci> r </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <ci> s </ci> </apply> <apply> <times /> <ci> r </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> r </ci> </apply> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> r </ci> <apply> <plus /> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> s </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <ci> r </ci> </apply> <ci> r </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> r </ci> </apply> <ci> r </ci> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "s_"]], "-", RowBox[List["r_", " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], ")"]]]], "+", RowBox[List["r_", " ", RowBox[List["(", RowBox[List[SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "2"]]], ")"]]]]]], ")"]], " ", SuperscriptBox["z_", "2"], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["r_", "2"], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "s_"]], ")"]], " ", "s_"]], "+", RowBox[List["r_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "s_"]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], ")"]]]], "-", RowBox[List["a_", " ", SuperscriptBox["r_", "2"], " ", SuperscriptBox["z_", "r_"], " ", SubscriptBox["a_", "1"]]], "-", RowBox[List["r_", " ", RowBox[List["(", RowBox[List[RowBox[List["a_", " ", "r_", " ", SuperscriptBox["z_", "r_"], " ", SubscriptBox["a_", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r_", "+", RowBox[List["2", " ", "s_"]]]], ")"]], " ", SubscriptBox["b_", "2"]]], "+", RowBox[List[SubscriptBox["b_", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r_", "+", RowBox[List["2", " ", "s_"]], "-", RowBox[List["r_", " ", SubscriptBox["b_", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", "z_", " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a_"]], " ", "r_", " ", SuperscriptBox["z_", "r_"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "s_"]], "+", RowBox[List["r_", " ", SubscriptBox["a_", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "s_"]], "+", RowBox[List["r_", " ", SubscriptBox["a_", "2"]]]]], ")"]]]], "-", RowBox[List["s_", " ", RowBox[List["(", RowBox[List["r_", "+", "s_", "-", RowBox[List["r_", " ", SubscriptBox["b_", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["r_", "+", "s_", "-", RowBox[List["r_", " ", SubscriptBox["b_", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|