|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.13.0014.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wronskian[s^z HypergeometricPFQRegularized[{Subscript[a, 1],
Subscript[a, 2]}, {Subscript[b, 1], Subscript[b, 2]}, a r^z],
s^z (MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]}, {}},
{{0, 1 - Subscript[b, 1]}, {1 - Subscript[b, 2]}}, a r^z] +
MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]}, {}},
{{0, 1 - Subscript[b, 2]}, {1 - Subscript[b, 1]}}, a r^z]),
s^z MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2]}, {}},
{{0, 1 - Subscript[b, 1], 1 - Subscript[b, 2]}, {}}, (-a) r^z], z] ==
a^3 E^(a r^z) r^(3 z) ((-a) r^z)^(-Subscript[b, 1] - Subscript[b, 2])
(a r^z)^(-1 - Subscript[b, 1] - Subscript[b, 2])
(((-a) r^z)^Subscript[b, 2] (a r^z)^Subscript[b, 1] +
((-a) r^z)^Subscript[b, 1] (a r^z)^Subscript[b, 2]) s^(3 z)
Gamma[1 + Subscript[a, 1] - Subscript[b, 1]]
Gamma[1 + Subscript[a, 2] - Subscript[b, 1]]
Gamma[1 + Subscript[a, 1] - Subscript[b, 2]]
Gamma[1 + Subscript[a, 2] - Subscript[b, 2]] Log[r]^3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["s", "z"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["s", "z"], RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], ")"]]]], ",", RowBox[List[SuperscriptBox["s", "z"], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]]]], "]"]]]], ",", " ", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["a", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]], " ", SuperscriptBox["r", RowBox[List["3", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["b", "1"]]], "-", SubscriptBox["b", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["r", "z"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], ")"]], SubscriptBox["b", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["r", "z"]]], ")"]], SubscriptBox["b", "1"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], ")"]], SubscriptBox["b", "1"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["r", "z"]]], ")"]], SubscriptBox["b", "2"]]]]]], ")"]], " ", SuperscriptBox["s", RowBox[List["3", " ", "z"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "r", "]"]], "3"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox[OverscriptBox["F", "~"], "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List["a", " ", SuperscriptBox["r", "z"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["a", " ", SuperscriptBox["r", "z"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["a", " ", SuperscriptBox["r", "z"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "3"]], RowBox[List["3", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mtext> </mtext> <mrow> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> r </mi> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> s </mi> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list /> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> s </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> r </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["s_", "z_"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", RowBox[List["a_", " ", SuperscriptBox["r_", "z_"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["s_", "z_"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a_", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a_", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b_", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b_", "2"]]], "}"]]]], "}"]], ",", RowBox[List["a_", " ", SuperscriptBox["r_", "z_"]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a_", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a_", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b_", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b_", "1"]]], "}"]]]], "}"]], ",", RowBox[List["a_", " ", SuperscriptBox["r_", "z_"]]]]], "]"]]]], ")"]]]], ",", RowBox[List[SuperscriptBox["s_", "z_"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a_", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a_", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b_", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b_", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "a_"]], " ", SuperscriptBox["r_", "z_"]]]]], "]"]]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["a", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]], " ", SuperscriptBox["r", RowBox[List["3", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["bb", "1"]]], "-", SubscriptBox["bb", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["r", "z"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], ")"]], SubscriptBox["bb", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["r", "z"]]], ")"]], SubscriptBox["bb", "1"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], ")"]], SubscriptBox["bb", "1"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["r", "z"]]], ")"]], SubscriptBox["bb", "2"]]]]]], ")"]], " ", SuperscriptBox["s", RowBox[List["3", " ", "z"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "r", "]"]], "3"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|