|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.28.03.0021.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{a, b, a, a}, {a + 1, a + 1, a + 1}, 1] ==
(a^3/2) Beta[a, 1 - b] (PolyGamma[1, a] - PolyGamma[1, 1 + a - b] +
(PolyGamma[a] - PolyGamma[1 + a - b])^2) /; Re[b] < 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", "a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["a", "+", "1"]], ",", RowBox[List["a", "+", "1"]], ",", RowBox[List["a", "+", "1"]]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["a", "3"], "2"], RowBox[List["Beta", "[", RowBox[List["a", ",", RowBox[List["1", "-", "b"]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "b"]]]], "]"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", "a", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "b"]], "]"]]]], ")"]], "2"]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "b", "]"]], "<", "3"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["b", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> < </mo> <mn> 3 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> b </ci> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Beta </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <real /> <ci> b </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "b_", ",", "a_", ",", "a_"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["a_", "+", "1"]], ",", RowBox[List["a_", "+", "1"]], ",", RowBox[List["a_", "+", "1"]]]], "}"]], ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "3"], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", RowBox[List["1", "-", "b"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "b"]]]], "]"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", "a", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "b"]], "]"]]]], ")"]], "2"]]], ")"]]]], "/;", RowBox[List[RowBox[List["Re", "[", "b", "]"]], "<", "3"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|