|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.28.03.0187.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{3/8, 5/8, 7/8, 9/8}, {5/6, 7/6, 9/6}, z] ==
(1/(3 Sqrt[3])) (4 2^(1/4)
(Sqrt[1/(z + Sqrt[z^2 - z^3])^(1/3) + (z + Sqrt[z^2 - z^3])^(1/3)/z] -
Sqrt[-(1/(z + Sqrt[z^2 - z^3])^(1/3)) - (z + Sqrt[z^2 - z^3])^(1/3)/z +
(2 Sqrt[2])/(z Sqrt[1/(z + Sqrt[z^2 - z^3])^(1/3) +
(z + Sqrt[z^2 - z^3])^(1/3)/z])])^(3/2)) /; Re[z] >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "8"], ",", FractionBox["5", "8"], ",", FractionBox["7", "8"], ",", FractionBox["9", "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", FractionBox["7", "6"], ",", FractionBox["9", "6"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["3", " ", SqrtBox["3"]]]], RowBox[List["(", RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]], "z"]]]], "-", SqrtBox[RowBox[List[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]], "z"], "+", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List["z", " ", SqrtBox[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]], "z"]]]]]]]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[GreaterEqual]", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 9 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 9 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "8"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["5", "8"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["7", "8"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["9", "8"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["5", "6"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["7", "6"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["9", "6"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> </mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mfrac> <mroot> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mroot> <mi> z </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mroot> </mfrac> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mfrac> <mroot> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mroot> <mi> z </mi> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mroot> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mroot> <mi> z </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mroot> </mfrac> </mrow> </msqrt> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mroot> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 3 </mn> </mroot> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≥ </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 3 <sep /> 8 </cn> <cn type='rational'> 5 <sep /> 8 </cn> <cn type='rational'> 7 <sep /> 8 </cn> <cn type='rational'> 9 <sep /> 8 </cn> </list> <list> <cn type='rational'> 5 <sep /> 6 </cn> <cn type='rational'> 7 <sep /> 6 </cn> <cn type='rational'> 9 <sep /> 6 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <geq /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "8"], ",", FractionBox["5", "8"], ",", FractionBox["7", "8"], ",", FractionBox["9", "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", FractionBox["7", "6"], ",", FractionBox["9", "6"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]], "z"]]]], "-", SqrtBox[RowBox[List[RowBox[List["-", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]]]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]], "z"], "+", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List["z", " ", SqrtBox[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "3"]]]]]], ")"]], RowBox[List["1", "/", "3"]]], "z"]]]]]]]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], RowBox[List["3", " ", SqrtBox["3"]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[GreaterEqual]", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|