|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.28.06.0028.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3],
Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]},
z] == (((Gamma[Subscript[a, 2] - Subscript[a, 1]]
Gamma[Subscript[a, 3] - Subscript[a, 1]]
Gamma[Subscript[a, 4] - Subscript[a, 1]]
Product[Gamma[Subscript[b, k]], {k, 1, 3}])/(Gamma[Subscript[a, 2]]
Gamma[Subscript[a, 3]] Gamma[Subscript[a, 4]]
Product[Gamma[Subscript[b, j] - Subscript[a, 1]], {j, 1, 3}]))
Sum[(Pochhammer[Subscript[a, 1], j]/((-Subscript[z, 0])^j j!))
HypergeometricPFQ[{Subscript[a, 1] - Subscript[b, 1] + 1,
Subscript[a, 1] - Subscript[b, 2] + 1, Subscript[a, 1] -
Subscript[b, 3] + 1, Subscript[a, 1] + j},
{Subscript[a, 1] - Subscript[a, 2] + 1, Subscript[a, 1] -
Subscript[a, 3] + 1, Subscript[a, 1] - Subscript[a, 4] + 1},
1/Subscript[z, 0]] (z - Subscript[z, 0])^j, {j, 0, Infinity}])/
((-(1/Subscript[z, 0]))^(Subscript[a, 1] Floor[Arg[-z + Subscript[z, 0]]/
(2 Pi)]) (-Subscript[z, 0])^(Subscript[a, 1]
(1 + Floor[Arg[-z + Subscript[z, 0]]/(2 Pi)]))) +
(((Gamma[Subscript[a, 1] - Subscript[a, 2]]
Gamma[Subscript[a, 3] - Subscript[a, 2]]
Gamma[Subscript[a, 4] - Subscript[a, 2]]
Product[Gamma[Subscript[b, k]], {k, 1, 3}])/(Gamma[Subscript[a, 1]]
Gamma[Subscript[a, 3]] Gamma[Subscript[a, 4]]
Product[Gamma[Subscript[b, j] - Subscript[a, 2]], {j, 1, 3}]))
Sum[(Pochhammer[Subscript[a, 2], j]/((-Subscript[z, 0])^j j!))
HypergeometricPFQ[{Subscript[a, 2] - Subscript[b, 1] + 1,
Subscript[a, 2] - Subscript[b, 2] + 1, Subscript[a, 2] -
Subscript[b, 3] + 1, Subscript[a, 2] + j},
{Subscript[a, 2] - Subscript[a, 1] + 1, Subscript[a, 2] -
Subscript[a, 3] + 1, Subscript[a, 2] - Subscript[a, 4] + 1},
1/Subscript[z, 0]] (z - Subscript[z, 0])^j, {j, 0, Infinity}])/
((-(1/Subscript[z, 0]))^(Subscript[a, 2] Floor[Arg[-z + Subscript[z, 0]]/
(2 Pi)]) (-Subscript[z, 0])^(Subscript[a, 2]
(1 + Floor[Arg[-z + Subscript[z, 0]]/(2 Pi)]))) +
(((Gamma[Subscript[a, 1] - Subscript[a, 3]]
Gamma[Subscript[a, 2] - Subscript[a, 3]]
Gamma[Subscript[a, 4] - Subscript[a, 3]]
Product[Gamma[Subscript[b, k]], {k, 1, 3}])/(Gamma[Subscript[a, 1]]
Gamma[Subscript[a, 2]] Gamma[Subscript[a, 4]]
Product[Gamma[Subscript[b, j] - Subscript[a, 3]], {j, 1, 3}]))
Sum[(Pochhammer[Subscript[a, 3], j]/((-Subscript[z, 0])^j j!))
HypergeometricPFQ[{Subscript[a, 3] - Subscript[b, 1] + 1,
Subscript[a, 3] - Subscript[b, 2] + 1, Subscript[a, 3] -
Subscript[b, 3] + 1, Subscript[a, 3] + j},
{Subscript[a, 3] - Subscript[a, 1] + 1, Subscript[a, 3] -
Subscript[a, 2] + 1, Subscript[a, 3] - Subscript[a, 4] + 1},
1/Subscript[z, 0]] (z - Subscript[z, 0])^j, {j, 0, Infinity}])/
((-(1/Subscript[z, 0]))^(Subscript[a, 3] Floor[Arg[-z + Subscript[z, 0]]/
(2 Pi)]) (-Subscript[z, 0])^(Subscript[a, 3]
(1 + Floor[Arg[-z + Subscript[z, 0]]/(2 Pi)]))) +
(((Gamma[Subscript[a, 1] - Subscript[a, 4]]
Gamma[Subscript[a, 2] - Subscript[a, 4]]
Gamma[Subscript[a, 3] - Subscript[a, 4]]
Product[Gamma[Subscript[b, k]], {k, 1, 3}])/(Gamma[Subscript[a, 1]]
Gamma[Subscript[a, 2]] Gamma[Subscript[a, 3]]
Product[Gamma[Subscript[b, j] - Subscript[a, 4]], {j, 1, 3}]))
Sum[(Pochhammer[Subscript[a, 4], j]/((-Subscript[z, 0])^j j!))
HypergeometricPFQ[{Subscript[a, 4] - Subscript[b, 1] + 1,
Subscript[a, 4] - Subscript[b, 2] + 1, Subscript[a, 4] -
Subscript[b, 3] + 1, Subscript[a, 4] + j},
{Subscript[a, 4] - Subscript[a, 1] + 1, Subscript[a, 4] -
Subscript[a, 2] + 1, Subscript[a, 4] - Subscript[a, 3] + 1},
1/Subscript[z, 0]] (z - Subscript[z, 0])^j, {j, 0, Infinity}])/
((-(1/Subscript[z, 0]))^(Subscript[a, 4] Floor[Arg[-z + Subscript[z, 0]]/
(2 Pi)]) (-Subscript[z, 0])^(Subscript[a, 4]
(1 + Floor[Arg[-z + Subscript[z, 0]]/(2 Pi)]))) /;
Abs[Subscript[z, 0]] > 1 && ForAll[{j, k}, Element[{j, k}, Integers] &&
j != k && 1 <= j <= 4 && 1 <= k <= 4,
!Element[Subscript[a, j] - Subscript[a, k], Integers]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "4"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "1"]]], "]"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", SubscriptBox["z", "0"]]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "1"], ",", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "0"]]], ")"]], RowBox[List["-", "j"]]]]], RowBox[List["j", "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "1"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "4"], "+", "1"]]]], "}"]], ",", FractionBox["1", SubscriptBox["z", "0"]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "j"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "2"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "2"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "4"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "2"]]], "]"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", SubscriptBox["z", "0"]]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "2"], ",", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "0"]]], ")"]], RowBox[List["-", "j"]]]]], RowBox[List["j", "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "4"], "+", "1"]]]], "}"]], ",", FractionBox["1", SubscriptBox["z", "0"]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "j"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "3"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "3"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "4"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "3"]]], "]"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", SubscriptBox["z", "0"]]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["a", "3"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["a", "3"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "3"], ",", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "0"]]], ")"]], RowBox[List["-", "j"]]]]], RowBox[List["j", "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "3"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "+", "1"]]]], "}"]], ",", FractionBox["1", SubscriptBox["z", "0"]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "j"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "4"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "4"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "4"]]], "]"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", SubscriptBox["z", "0"]]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["a", "4"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "0"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["a", "4"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "4"], ",", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "0"]]], ")"]], RowBox[List["-", "j"]]]]], RowBox[List["j", "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "4"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["a", "3"], "+", "1"]]]], "}"]], ",", FractionBox["1", SubscriptBox["z", "0"]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "j"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", SubscriptBox["z", "0"], "]"]], ">", "1"]], "\[And]", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[NotEqual]", "k"]], "\[And]", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "4"]], "\[And]", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "4"]]]]]]], RowBox[List["(", "\[InvisibleSpace]", RowBox[List["Not", "[", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]], "]"]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "1"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", SubscriptBox["a", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", SubscriptBox["z", "0"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", SubscriptBox["a", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "+", SubscriptBox["a", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", SubscriptBox["z", "0"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "3"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", SubscriptBox["a", "3"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "+", SubscriptBox["a", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], "+", SubscriptBox["a", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", SubscriptBox["z", "0"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "4"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", SubscriptBox["a", "4"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "+", SubscriptBox["a", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], "+", SubscriptBox["a", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "3"]]], "+", SubscriptBox["a", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", SubscriptBox["z", "0"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mo> ∀ </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> } </mo> </mrow> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> j </mi> <mo> ≠ </mo> <mi> k </mi> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> ≤ </mo> <mi> j </mi> <mo> ≤ </mo> <mn> 4 </mn> </mrow> <mo> ∧ </mo> <mrow> <mn> 1 </mn> <mo> ≤ </mo> <mi> k </mi> <mo> ≤ </mo> <mn> 4 </mn> </mrow> </mrow> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <abs /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <forall /> <bvar> <list> <ci> j </ci> <ci> k </ci> </list> </bvar> <bvar> <apply> <and /> <apply> <in /> <list> <ci> j </ci> <ci> k </ci> </list> <integers /> </apply> <apply> <neq /> <ci> j </ci> <ci> k </ci> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> j </ci> <cn type='integer'> 4 </cn> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> k </ci> <cn type='integer'> 4 </cn> </apply> </apply> </bvar> <apply> <notin /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> </apply> <integers /> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["aa", "1"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["aa", "1"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "1"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List["-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "1"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "4"], "+", "1"]]]], "}"]], ",", FractionBox["1", SubscriptBox["zz", "0"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "j"]]], RowBox[List["j", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "4"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["aa", "1"]]], "]"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["aa", "2"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["aa", "2"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "2"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List["-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "2"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "4"], "+", "1"]]]], "}"]], ",", FractionBox["1", SubscriptBox["zz", "0"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "j"]]], RowBox[List["j", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "4"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["aa", "2"]]], "]"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["aa", "3"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["aa", "3"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "3"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List["-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "3"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "4"], "+", "1"]]]], "}"]], ",", FractionBox["1", SubscriptBox["zz", "0"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "j"]]], RowBox[List["j", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "4"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["aa", "3"]]], "]"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "4"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "4"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "4"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", SubscriptBox["zz", "0"]]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["aa", "4"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["aa", "4"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "+", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "4"], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List["-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["bb", "3"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "4"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "4"], "-", SubscriptBox["aa", "3"], "+", "1"]]]], "}"]], ",", FractionBox["1", SubscriptBox["zz", "0"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "j"]]], RowBox[List["j", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["aa", "4"]]], "]"]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", SubscriptBox["zz", "0"], "]"]], ">", "1"]], "&&", RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "4"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "4"]]]]]]], RowBox[List["(", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]]]], ")"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|