Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] > Integral representations > On the real axis > Of the direct function





http://functions.wolfram.com/07.28.07.0001.01









  


  










Input Form





HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] == (Gamma[Subscript[b, 3]]/(Gamma[Subscript[a, 4]] Gamma[Subscript[b, 3] - Subscript[a, 4]])) Integrate[t^(Subscript[a, 4] - 1) (1 - t)^(Subscript[b, 3] - Subscript[a, 4] - 1) HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, t z], {t, 0, 1}] /; Re[Subscript[b, 3]] > Re[Subscript[a, 4]] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["Gamma", "[", SubscriptBox["b", "3"], "]"]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "4"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["a", "4"]]], "]"]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[SuperscriptBox["t", RowBox[List[SubscriptBox["a", "4"], "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "t"]], ")"]], RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["a", "4"], "-", "1"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", RowBox[List["t", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "3"], "]"]], ">", RowBox[List["Re", "[", SubscriptBox["a", "4"], "]"]], ">", "0"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mn> 1 </mn> </msubsup> <mrow> <mrow> <msup> <mi> t </mi> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mi> t </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;t&quot;, &quot; &quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <ci> t </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <real /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "3"], "]"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[RowBox[List[SuperscriptBox["t", RowBox[List[SubscriptBox["aa", "4"], "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "t"]], ")"]], RowBox[List[SubscriptBox["bb", "3"], "-", SubscriptBox["aa", "4"], "-", "1"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"]]], "}"]], ",", RowBox[List["t", " ", "z"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "4"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "3"], "-", SubscriptBox["aa", "4"]]], "]"]]]]], "/;", RowBox[List[RowBox[List["Re", "[", SubscriptBox["bb", "3"], "]"]], ">", RowBox[List["Re", "[", SubscriptBox["aa", "4"], "]"]], ">", "0"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29