Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] > Integral representations > Multiple integral representations





http://functions.wolfram.com/07.28.07.0005.01









  


  










Input Form





HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] == Product[(Gamma[Subscript[b, k]]/(Gamma[Subscript[a, k]] Gamma[Subscript[b, k] - Subscript[a, k]])) Integrate[Product[(Subscript[t, k]^(Subscript[a, k] - 1) (1 - Subscript[t, k])^(Subscript[b, k] - Subscript[a, k] - 1))/ (1 - z Product[Subscript[t, k], {k, 1, 3}])^Subscript[a, 4], {k, 1, 3}], {Subscript[t, 3], 0, 1}, {Subscript[t, 2], 0, 1}, {Subscript[t, 1], 0, 1}], {k, 1, 3}] /; Re[Subscript[b, k]] > Re[Subscript[a, k]] > 0 && 1 <= k <= 3 && Abs[Arg[1 - z]] < Pi










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]], RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "k"], "-", SubscriptBox["a", "k"]]], "]"]]]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List[SubsuperscriptBox["t", "k", RowBox[List[SubscriptBox["a", "k"], "-", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["t", "k"]]], ")"]], RowBox[List[SubscriptBox["b", "k"], "-", SubscriptBox["a", "k"], "-", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], SubscriptBox["t", "k"]]]]]]], ")"]], RowBox[List["-", SubscriptBox["a", "4"]]]]]]]], ")"]], RowBox[List["\[DifferentialD]", SubscriptBox["t", "1"]]], RowBox[List["\[DifferentialD]", SubscriptBox["t", "2"]]], RowBox[List["\[DifferentialD]", SubscriptBox["t", "3"]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "k"], "]"]], ">", RowBox[List["Re", "[", SubscriptBox["a", "k"], "]"]], ">", "0"]], "\[And]", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "3"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["1", "-", "z"]], "]"]], "]"]], "<", "\[Pi]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mn> 1 </mn> </msubsup> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mn> 1 </mn> </msubsup> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mn> 1 </mn> </msubsup> <mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <mrow> <msubsup> <mi> t </mi> <mi> k </mi> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> t </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <msub> <mi> t </mi> <mi> k </mi> </msub> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </msup> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <msub> <mi> t </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <msub> <mi> t </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <msub> <mi> t </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> k </mi> <mo> &#8804; </mo> <mn> 3 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mi> &#960; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> t </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <int /> <bvar> <apply> <ci> Subscript </ci> <ci> t </ci> <cn type='integer'> 3 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> t </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> t </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Subscript </ci> <ci> t </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> <apply> <real /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> <apply> <lt /> <apply> <abs /> <apply> <arg /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <pi /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List[SubsuperscriptBox["t", "k", RowBox[List[SubscriptBox["a", "k"], "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["t", "k"]]], ")"]], RowBox[List[SubscriptBox["b", "k"], "-", SubscriptBox["a", "k"], "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], SubscriptBox["t", "k"]]]]]]], ")"]], RowBox[List["-", SubscriptBox["aa", "4"]]]]]]]], RowBox[List["\[DifferentialD]", SubscriptBox["t", "1"]]], RowBox[List["\[DifferentialD]", SubscriptBox["t", "2"]]], RowBox[List["\[DifferentialD]", SubscriptBox["t", "3"]]]]]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "k"], "-", SubscriptBox["a", "k"]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", SubscriptBox["b", "k"], "]"]], ">", RowBox[List["Re", "[", SubscriptBox["a", "k"], "]"]], ">", "0"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "3"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["1", "-", "z"]], "]"]], "]"]], "<", "\[Pi]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29