|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.28.13.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[4][w][z] +
(((6 + Subscript[a, 1] + Subscript[a, 2] + Subscript[a, 3] +
Subscript[a, 4]) Derivative[1][g][z])/(-1 + g[z]) -
((3 + Subscript[b, 1] + Subscript[b, 2] + Subscript[b, 3])
Derivative[1][g][z])/((-1 + g[z]) g[z]) - (6 Derivative[2][g][z])/
Derivative[1][g][z]) Derivative[3][w][z] +
(((7 + Subscript[a, 1] Subscript[a, 2] + Subscript[a, 1] Subscript[a, 3] +
Subscript[a, 2] Subscript[a, 3] + Subscript[a, 1] Subscript[a, 4] +
Subscript[a, 2] Subscript[a, 4] + Subscript[a, 3] Subscript[a, 4] +
3 (Subscript[a, 1] + Subscript[a, 2] + Subscript[a, 3] +
Subscript[a, 4])) Derivative[1][g][z]^2)/((-1 + g[z]) g[z]) -
(((1 + Subscript[b, 2]) (1 + Subscript[b, 3]) + Subscript[b, 1]
(1 + Subscript[b, 2] + Subscript[b, 3])) Derivative[1][g][z]^2)/
((-1 + g[z]) g[z]^2) - (3 (6 + Subscript[a, 1] + Subscript[a, 2] +
Subscript[a, 3] + Subscript[a, 4]) Derivative[2][g][z])/(-1 + g[z]) +
(3 (3 + Subscript[b, 1] + Subscript[b, 2] + Subscript[b, 3])
Derivative[2][g][z])/((-1 + g[z]) g[z]) + (15 Derivative[2][g][z]^2)/
Derivative[1][g][z]^2 - (4 Derivative[3][g][z])/Derivative[1][g][z])
Derivative[2][w][z] +
((Subscript[b, 1] Subscript[b, 2] Subscript[b, 3] Derivative[1][g][z]^3)/
((1 - g[z]) g[z]^3) + (3 (6 + Subscript[a, 1] + Subscript[a, 2] +
Subscript[a, 3] + Subscript[a, 4]) Derivative[2][g][z]^2)/
((-1 + g[z]) Derivative[1][g][z]) -
(3 (3 + Subscript[b, 1] + Subscript[b, 2] + Subscript[b, 3])
Derivative[2][g][z]^2)/((-1 + g[z]) g[z] Derivative[1][g][z]) -
(15 Derivative[2][g][z]^3)/Derivative[1][g][z]^3 +
(1/((-1 + g[z]) g[z]^2)) (Derivative[1][g][z]
((1 + Subscript[a, 1] + Subscript[a, 2] + Subscript[a, 1]
Subscript[a, 2] + Subscript[a, 3] + Subscript[a, 1]
Subscript[a, 3] + Subscript[a, 2] Subscript[a, 3] +
Subscript[a, 1] Subscript[a, 2] Subscript[a, 3] + Subscript[a, 4] +
Subscript[a, 1] Subscript[a, 4] + Subscript[a, 2] Subscript[a, 4] +
Subscript[a, 1] Subscript[a, 2] Subscript[a, 4] +
Subscript[a, 3] Subscript[a, 4] + Subscript[a, 1] Subscript[a, 3]
Subscript[a, 4] + Subscript[a, 2] Subscript[a, 3] Subscript[a, 4])
Derivative[1][g][z]^2 + ((1 + Subscript[b, 2])
(1 + Subscript[b, 3]) + Subscript[b, 1] (1 + Subscript[b, 2] +
Subscript[b, 3])) Derivative[2][g][z])) -
((6 + Subscript[a, 1] + Subscript[a, 2] + Subscript[a, 3] +
Subscript[a, 4]) Derivative[3][g][z])/(-1 + g[z]) +
(10 Derivative[2][g][z] Derivative[3][g][z])/Derivative[1][g][z]^2 +
(1/((-1 + g[z]) g[z])) ((-7 - Subscript[a, 1] Subscript[a, 2] -
Subscript[a, 1] Subscript[a, 3] - Subscript[a, 2] Subscript[a, 3] -
Subscript[a, 1] Subscript[a, 4] - Subscript[a, 2] Subscript[a, 4] -
Subscript[a, 3] Subscript[a, 4] - 3 (Subscript[a, 1] +
Subscript[a, 2] + Subscript[a, 3] + Subscript[a, 4]))
Derivative[1][g][z] Derivative[2][g][z] +
(3 + Subscript[b, 1] + Subscript[b, 2] + Subscript[b, 3])
Derivative[3][g][z]) - Derivative[4][g][z]/Derivative[1][g][z])
Derivative[1][w][z] + ((Subscript[a, 1] Subscript[a, 2] Subscript[a, 3]
Subscript[a, 4] Derivative[1][g][z]^4)/((-1 + g[z]) g[z]^3)) w[z] ==
0 /; w[z] == Subscript[c, 1] HypergeometricPFQRegularized[
{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], Subscript[a, 4]},
{Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, g[z]] +
Subscript[c, 2] (MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2],
1 - Subscript[a, 3], 1 - Subscript[a, 4]}, {}},
{{0, 1 - Subscript[b, 1]}, {1 - Subscript[b, 2], 1 - Subscript[b, 3]}},
g[z]] + MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2],
1 - Subscript[a, 3], 1 - Subscript[a, 4]}, {}},
{{0, 1 - Subscript[b, 2]}, {1 - Subscript[b, 1], 1 - Subscript[b, 3]}},
g[z]] + MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2],
1 - Subscript[a, 3], 1 - Subscript[a, 4]}, {}},
{{0, 1 - Subscript[b, 3]}, {1 - Subscript[b, 1], 1 - Subscript[b, 2]}},
g[z]]) + Subscript[c, 3]
(MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2], 1 - Subscript[a, 3],
1 - Subscript[a, 4]}, {}}, {{0, 1 - Subscript[b, 1],
1 - Subscript[b, 2]}, {1 - Subscript[b, 3]}}, -g[z]] +
MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2], 1 - Subscript[a, 3],
1 - Subscript[a, 4]}, {}}, {{0, 1 - Subscript[b, 1],
1 - Subscript[b, 3]}, {1 - Subscript[b, 2]}}, -g[z]] +
MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2], 1 - Subscript[a, 3],
1 - Subscript[a, 4]}, {}}, {{0, 1 - Subscript[b, 2],
1 - Subscript[b, 3]}, {1 - Subscript[b, 1]}}, -g[z]]) +
Subscript[c, 4] MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2],
1 - Subscript[a, 3], 1 - Subscript[a, 4]}, {}},
{{0, 1 - Subscript[b, 1], 1 - Subscript[b, 2], 1 - Subscript[b, 3]},
{}}, g[z]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["6", "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z", "]"]]]]], "-", FractionBox[RowBox[List["6", " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["7", "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "3"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z", "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "3"]]], ")"]]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["6", "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z", "]"]]]]], "+", FractionBox[RowBox[List["15", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]], "-", FractionBox[RowBox[List["4", " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], " ", "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SubscriptBox["b", "1"], " ", SubscriptBox["b", "2"], " ", SubscriptBox["b", "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"]]]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["6", "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]], "-", FractionBox[RowBox[List["15", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]], RowBox[List[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"]]], "+", SubscriptBox["a", "3"], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "3"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"]]], "+", SubscriptBox["a", "4"], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "3"]]], ")"]]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["6", "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]]], "+", FractionBox[RowBox[List["10", " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z", "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "3"]]], "-", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List[SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List["3", " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"]]]], RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "3"]]], "}"]]]], "}"]], ",", RowBox[List["-", RowBox[List["g", "[", "z", "]"]]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["-", RowBox[List["g", "[", "z", "]"]]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", RowBox[List["-", RowBox[List["g", "[", "z", "]"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "4"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox[OverscriptBox["F", "~"], "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["g", "(", "z", ")"]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["2", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["g", "(", "z", ")"]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["2", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["g", "(", "z", ")"]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["2", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["g", "(", "z", ")"]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["3", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["-", RowBox[List["g", "(", "z", ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["3", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["-", RowBox[List["g", "(", "z", ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["3", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["-", RowBox[List["g", "(", "z", ")"]]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["4", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["g", "(", "z", ")"]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> g </ci> <ci> z </ci> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> </list> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> </list> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> </list> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </list> <list /> </list> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["6", "+", SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", SubscriptBox["a_", "3"], "+", SubscriptBox["a_", "4"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "2"], "+", SubscriptBox["b_", "3"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z_", "]"]]]]], "-", FractionBox[RowBox[List["6", " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["7", "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "2"]]], "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "3"]]], "+", RowBox[List[SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "3"]]], "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "4"]]], "+", RowBox[List[SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "4"]]], "+", RowBox[List[SubscriptBox["a_", "3"], " ", SubscriptBox["a_", "4"]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", SubscriptBox["a_", "3"], "+", SubscriptBox["a_", "4"]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z_", "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b_", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b_", "3"]]], ")"]]]], "+", RowBox[List[SubscriptBox["b_", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b_", "2"], "+", SubscriptBox["b_", "3"]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["6", "+", SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", SubscriptBox["a_", "3"], "+", SubscriptBox["a_", "4"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "2"], "+", SubscriptBox["b_", "3"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z_", "]"]]]]], "+", FractionBox[RowBox[List["15", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]], "-", FractionBox[RowBox[List["4", " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SubscriptBox["b_", "1"], " ", SubscriptBox["b_", "2"], " ", SubscriptBox["b_", "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"]]]], "+", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["6", "+", SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", SubscriptBox["a_", "3"], "+", SubscriptBox["a_", "4"]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]], "-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "2"], "+", SubscriptBox["b_", "3"]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]], "-", FractionBox[RowBox[List["15", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "2"]]], "+", SubscriptBox["a_", "3"], "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "3"]]], "+", RowBox[List[SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "3"]]], "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "3"]]], "+", SubscriptBox["a_", "4"], "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "4"]]], "+", RowBox[List[SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "4"]]], "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "4"]]], "+", RowBox[List[SubscriptBox["a_", "3"], " ", SubscriptBox["a_", "4"]]], "+", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "3"], " ", SubscriptBox["a_", "4"]]], "+", RowBox[List[SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "3"], " ", SubscriptBox["a_", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b_", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b_", "3"]]], ")"]]]], "+", RowBox[List[SubscriptBox["b_", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b_", "2"], "+", SubscriptBox["b_", "3"]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["6", "+", SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", SubscriptBox["a_", "3"], "+", SubscriptBox["a_", "4"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]]], "+", FractionBox[RowBox[List["10", " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "-", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "2"]]], "-", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "3"]]], "-", RowBox[List[SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "3"]]], "-", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "4"]]], "-", RowBox[List[SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "4"]]], "-", RowBox[List[SubscriptBox["a_", "3"], " ", SubscriptBox["a_", "4"]]], "-", RowBox[List["3", " ", RowBox[List["(", RowBox[List[SubscriptBox["a_", "1"], "+", SubscriptBox["a_", "2"], "+", SubscriptBox["a_", "3"], "+", SubscriptBox["a_", "4"]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "2"], "+", SubscriptBox["b_", "3"]]], ")"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", RowBox[List["g", "[", "z_", "]"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]], RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a_", "1"], " ", SubscriptBox["a_", "2"], " ", SubscriptBox["a_", "3"], " ", SubscriptBox["a_", "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["g", "[", "z_", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "3"]]], "}"]]]], "}"]], ",", RowBox[List["-", RowBox[List["g", "[", "z", "]"]]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["-", RowBox[List["g", "[", "z", "]"]]]]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "-", SubscriptBox["b", "1"]]], "}"]]]], "}"]], ",", RowBox[List["-", RowBox[List["g", "[", "z", "]"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[SubscriptBox["c", "4"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|