
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.28.17.0003.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3],
Subscript[a, 4]}, {b, Subscript[b, 2], Subscript[b, 3]}, z] ==
((Subscript[B, 1] + Subscript[C, 1] z)/(z - 1))
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3],
Subscript[a, 4]}, {1 + b, Subscript[b, 2], Subscript[b, 3]}, z] +
((Subscript[B, 2] + Subscript[C, 2] z)/(z - 1))
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3],
Subscript[a, 4]}, {2 + b, Subscript[b, 2], Subscript[b, 3]}, z] +
((Subscript[B, 3] + Subscript[C, 3] z)/(z - 1))
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3],
Subscript[a, 4]}, {3 + b, Subscript[b, 2], Subscript[b, 3]}, z] +
((Subscript[C, 4] z)/(z - 1)) HypergeometricPFQ[
{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], Subscript[a, 4]},
{4 + b, Subscript[b, 2], Subscript[b, 3]}, z] /;
Subscript[B, 1] == (Subscript[b, 2] + Subscript[b, 3] - 3 b - 5)/b &&
Subscript[C, 1] == (6 - Subscript[a, 1] - Subscript[a, 2] -
Subscript[a, 3] - Subscript[a, 4] + 4 b)/b &&
Subscript[B, 2] == ((2 + b) (7 + 3 b - 2 Subscript[b, 2] -
2 Subscript[b, 3]) + Subscript[b, 2] Subscript[b, 3])/(b (b + 1)) &&
Subscript[C, 2] == (1/(b (1 + b)))
(3 (2 + b) (Subscript[a, 1] + Subscript[a, 2] + Subscript[a, 3] +
Subscript[a, 4]) - Subscript[a, 1] Subscript[a, 4] -
Subscript[a, 2] Subscript[a, 4] - Subscript[a, 3] Subscript[a, 4] -
Subscript[a, 1] Subscript[a, 2] - Subscript[a, 1] Subscript[a, 3] -
Subscript[a, 2] Subscript[a, 3] - 25 - 24 b - 6 b^2) &&
Subscript[B, 3] == -(((3 + b - Subscript[b, 2]) (3 + b - Subscript[b, 3]))/
(b (1 + b))) && Subscript[C, 3] == (1/(b (1 + b) (2 + b)))
((5 + 2 b) (13 + 10 b + 2 b^2 + Subscript[a, 1] Subscript[a, 3] +
Subscript[a, 2] Subscript[a, 3] + Subscript[a, 1] Subscript[a, 4] +
Subscript[a, 2] Subscript[a, 4] + Subscript[a, 1] Subscript[a, 2] +
Subscript[a, 3] Subscript[a, 4]) - (19 + 15 b + 3 b^2)
(Subscript[a, 1] + Subscript[a, 2] + Subscript[a, 3] +
Subscript[a, 4]) - Subscript[a, 1] Subscript[a, 3] Subscript[a, 4] -
Subscript[a, 2] Subscript[a, 3] Subscript[a, 4] -
Subscript[a, 1] Subscript[a, 2] Subscript[a, 4] -
Subscript[a, 1] Subscript[a, 2] Subscript[a, 3]) &&
Subscript[C, 4] == -(((3 - Subscript[a, 1] + b) (3 - Subscript[a, 2] + b)
(3 - Subscript[a, 3] + b) (3 - Subscript[a, 4] + b))/
(b (1 + b) (2 + b) (3 + b)))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List["b", ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SubscriptBox["B", "1"], "+", RowBox[List[SubscriptBox["C", "1"], " ", "z"]]]], RowBox[List["z", "-", "1"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "b"]], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SubscriptBox["B", "2"], "+", RowBox[List[SubscriptBox["C", "2"], " ", "z"]]]], RowBox[List["z", "-", "1"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "b"]], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List[SubscriptBox["C", "3"], " ", "z"]]]], RowBox[List["z", "-", "1"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["3", "+", "b"]], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SubscriptBox["C", "4"], " ", "z", " "]], RowBox[List["z", "-", "1"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["4", "+", "b"]], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["B", "1"], "\[Equal]", FractionBox[RowBox[List[SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "-", RowBox[List["3", " ", "b"]], "-", "5"]], "b"]]], "\[And]", RowBox[List[SubscriptBox["C", "1"], "\[Equal]", FractionBox[RowBox[List["6", "-", SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "+", RowBox[List["4", " ", "b"]]]], "b"]]], "\[And]", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", "b"]], "-", RowBox[List["2", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["2", " ", SubscriptBox["b", "3"]]]]], ")"]]]], "+", RowBox[List[SubscriptBox["b", "2"], " ", SubscriptBox["b", "3"]]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["b", "+", "1"]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "2"], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"]]], ")"]]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List[SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "3"]]], "-", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"]]], "-", "25", "-", RowBox[List["24", " ", "b"]], "-", RowBox[List["6", " ", SuperscriptBox["b", "2"]]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", "b", "-", SubscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "b", "-", SubscriptBox["b", "3"]]], ")"]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "3"], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["10", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "3"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "4"]]], "+", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"]]], "+", RowBox[List[SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["19", "+", RowBox[List["15", " ", "b"]], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], RowBox[List["(", " ", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"], "+", SubscriptBox["a", "4"]]], ")"]]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"], " ", SubscriptBox["a", "4"]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"]]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "4"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "-", SubscriptBox["a", "1"], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", SubscriptBox["a", "2"], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", SubscriptBox["a", "3"], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", SubscriptBox["a", "4"], "+", "b"]], ")"]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "b"]], ")"]]]]]]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mi> b </mi> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["b", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <msub> <mi> B </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <mi> C </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["b", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["b", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <mi> C </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["b", "+", "3"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msub> <mi> C </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["b", "+", "4"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> B </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mi> b </mi> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 6 </mn> </mrow> <mi> b </mi> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 3 </mn> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> + </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 4 </mn> </msub> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 4 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -5 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <cn type='integer'> -25 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <ci> b </ci> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <ci> b </ci> </apply> <cn type='integer'> 19 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List["b_", ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "1"], "+", RowBox[List[SubscriptBox["C", "1"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"], ",", SubscriptBox["aa", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "b"]], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "z"]], "]"]]]], RowBox[List["z", "-", "1"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "2"], "+", RowBox[List[SubscriptBox["C", "2"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"], ",", SubscriptBox["aa", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "b"]], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "z"]], "]"]]]], RowBox[List["z", "-", "1"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List[SubscriptBox["C", "3"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"], ",", SubscriptBox["aa", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["3", "+", "b"]], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "z"]], "]"]]]], RowBox[List["z", "-", "1"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["C", "4"], " ", "z"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"], ",", SubscriptBox["aa", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["4", "+", "b"]], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "z"]], "]"]]]], RowBox[List["z", "-", "1"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["B", "1"], "\[Equal]", FractionBox[RowBox[List[SubscriptBox["bb", "2"], "+", SubscriptBox["bb", "3"], "-", RowBox[List["3", " ", "b"]], "-", "5"]], "b"]]], "&&", RowBox[List[SubscriptBox["C", "1"], "\[Equal]", FractionBox[RowBox[List["6", "-", SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "4"], "+", RowBox[List["4", " ", "b"]]]], "b"]]], "&&", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", "b"]], "-", RowBox[List["2", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["2", " ", SubscriptBox["bb", "3"]]]]], ")"]]]], "+", RowBox[List[SubscriptBox["bb", "2"], " ", SubscriptBox["bb", "3"]]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["b", "+", "1"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["aa", "2"], "+", SubscriptBox["aa", "3"], "+", SubscriptBox["aa", "4"]]], ")"]]]], "-", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "4"]]], "-", RowBox[List[SubscriptBox["aa", "2"], " ", SubscriptBox["aa", "4"]]], "-", RowBox[List[SubscriptBox["aa", "3"], " ", SubscriptBox["aa", "4"]]], "-", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "2"]]], "-", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "3"]]], "-", RowBox[List[SubscriptBox["aa", "2"], " ", SubscriptBox["aa", "3"]]], "-", "25", "-", RowBox[List["24", " ", "b"]], "-", RowBox[List["6", " ", SuperscriptBox["b", "2"]]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", "b", "-", SubscriptBox["bb", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "b", "-", SubscriptBox["bb", "3"]]], ")"]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]]]]]]]]], "&&", RowBox[List[SubscriptBox["C", "3"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["10", " ", "b"]], "+", RowBox[List["2", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "3"]]], "+", RowBox[List[SubscriptBox["aa", "2"], " ", SubscriptBox["aa", "3"]]], "+", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "4"]]], "+", RowBox[List[SubscriptBox["aa", "2"], " ", SubscriptBox["aa", "4"]]], "+", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "2"]]], "+", RowBox[List[SubscriptBox["aa", "3"], " ", SubscriptBox["aa", "4"]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["19", "+", RowBox[List["15", " ", "b"]], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["aa", "2"], "+", SubscriptBox["aa", "3"], "+", SubscriptBox["aa", "4"]]], ")"]]]], "-", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "3"], " ", SubscriptBox["aa", "4"]]], "-", RowBox[List[SubscriptBox["aa", "2"], " ", SubscriptBox["aa", "3"], " ", SubscriptBox["aa", "4"]]], "-", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "2"], " ", SubscriptBox["aa", "4"]]], "-", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "2"], " ", SubscriptBox["aa", "3"]]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "4"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "-", SubscriptBox["aa", "1"], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", SubscriptBox["aa", "2"], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", SubscriptBox["aa", "3"], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", SubscriptBox["aa", "4"], "+", "b"]], ")"]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", "b"]], ")"]]]]]]]]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|