| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.28.17.0025.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], 
   Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, 
  z] == Sum[(z^k/k!) (Product[Pochhammer[Subscript[a, j], k], {j, 1, 4}]/
    Product[Pochhammer[Subscript[b, j], k], {j, 1, 3}]) 
   HypergeometricPFQ[{1, (Subscript[a, 1] + k)/n, \[Ellipsis], 
     (Subscript[a, 1] + k + n - 1)/n, \[Ellipsis], (Subscript[a, 4] + k)/n, 
     \[Ellipsis], (Subscript[a, 4] + k + n - 1)/n}, 
    {(k + 1)/n, \[Ellipsis], (k + n)/n, (Subscript[b, 1] + k)/n, \[Ellipsis], 
     (Subscript[b, 1] + k + n - 1)/n, (Subscript[b, 2] + k)/n, \[Ellipsis], 
     (Subscript[b, 2] + k + n - 1)/n, (Subscript[b, 3] + k)/n, \[Ellipsis], 
     (Subscript[b, 3] + k + n - 1)/n}, z^n], {k, 0, n - 1}] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[SuperscriptBox["z", "k"], RowBox[List["k", "!"]]], FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "4"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "j"], ",", "k"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["b", "j"], ",", "k"]], "]"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "4"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "4"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "2"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "2"], "+", "k", "+", "n", "-", "1"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "3"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "3"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", SuperscriptBox["z", "n"]]], "]"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 4 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </munderover>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["b", "j"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <mi> k </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  <mo> + </mo>  <mi> k </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List[RowBox[List["4", "n"]], "+", "1"]], TraditionalForm]], SubscriptBox["F", RowBox[List["4", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "4"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "4"], "+", "k", "+", "n", "-", "1"]], "n"], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["k", "+", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "1"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "1"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "2"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "2"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "3"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "3"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", SuperscriptBox["z", "n"]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 4 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </munderover>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["b", "j"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <mi> k </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  <mo> + </mo>  <mi> k </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  <mo> + </mo>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> ; </mo>  <mrow>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  </mrow>  <mo> ; </mo>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List[RowBox[List["4", "n"]], "+", "1"]], TraditionalForm]], SubscriptBox["F", RowBox[List["4", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "4"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "4"], "+", "k", "+", "n", "-", "1"]], "n"], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["k", "+", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "1"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "1"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "2"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "2"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "3"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "3"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", SuperscriptBox["z", "n"]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |