Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] > Differentiation > Low-order differentiation > With respect to b2





http://functions.wolfram.com/07.28.20.0012.01









  


  










Input Form





Derivative[{0, 0, 0, 0}, {0, 1, 0}, 0][HypergeometricPFQ][ {Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] == (-((z Product[Subscript[a, j], {j, 1, 4}])/(Subscript[b, 2] Product[Subscript[b, j], {j, 1, 3}]))) HypergeometricPFQ[{{1 + Subscript[a, 1], 1 + Subscript[a, 2], 1 + Subscript[a, 3], 1 + Subscript[a, 4]}, {1}, {1, Subscript[b, 2]}}, {{2, 1 + Subscript[b, 1], 1 + Subscript[b, 2], 1 + Subscript[b, 3]}, {}, {1 + Subscript[b, 2]}}, z, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", "0", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", "1", ",", "0"]], "}"]], ",", "0"]], "]"]], "[", "HypergeometricPFQ", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["z", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "4"], SubscriptBox["a", "j"]]]]], RowBox[List[SubscriptBox["b", "2"], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], SubscriptBox["b", "j"], " "]]]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["b", "2"]]], "}"]]]], "}"]], ",", "z", ",", "z"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mn> 4 </mn> </msub> <msubsup> <mi> F </mi> <mn> 3 </mn> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> , </mo> <mrow> <semantics> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[&quot;a&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </mrow> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <msub> <mn> 4 </mn> </msub> <msubsup> <mi> F </mi> <mn> 3 </mn> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> , </mo> <mrow> <semantics> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[&quot;a&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </mrow> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["HypergeometricPFQ", TagBox[RowBox[List["(", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", "0", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", "1", ",", "0"]], "}"]], ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "4"], SubscriptBox["aa", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "4"]]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", SubscriptBox["bb", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "+", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], "}"]]]], "}"]], ",", "z", ",", "z"]], "]"]]]], RowBox[List[SubscriptBox["bb", "2"], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], SubscriptBox["bb", "j"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29