|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.28.20.0018.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3],
Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]},
z], {z, 2}] == ((Subscript[a, 1] (1 + Subscript[a, 1]) Subscript[a, 2]
(1 + Subscript[a, 2]) Subscript[a, 3] (1 + Subscript[a, 3])
Subscript[a, 4] (1 + Subscript[a, 4]))/(Subscript[b, 1]
(1 + Subscript[b, 1]) Subscript[b, 2] (1 + Subscript[b, 2])
Subscript[b, 3] (1 + Subscript[b, 3])))
HypergeometricPFQ[{Subscript[a, 1] + 2, Subscript[a, 2] + 2,
Subscript[a, 3] + 2, Subscript[a, 4] + 2}, {Subscript[b, 1] + 2,
Subscript[b, 2] + 2, Subscript[b, 3] + 2}, z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]], "\[Equal]", " ", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"]]], ")"]], " ", SubscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "2"]]], ")"]], " ", SubscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "3"]]], ")"]], " ", SubscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "4"]]], ")"]]]], RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "1"]]], ")"]], " ", SubscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]], " ", SubscriptBox["b", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "3"]]], ")"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "+", "2"]], ",", RowBox[List[SubscriptBox["a", "2"], "+", "2"]], ",", RowBox[List[SubscriptBox["a", "3"], "+", "2"]], ",", RowBox[List[SubscriptBox["a", "4"], "+", "2"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["b", "1"], "+", "2"]], ",", RowBox[List[SubscriptBox["b", "2"], "+", "2"]], ",", RowBox[List[SubscriptBox["b", "3"], "+", "2"]]]], "}"]], ",", "z"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mn> 2 </mn> </msup> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "1"], "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "3"], "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "4"], "+", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "1"], "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "2"], "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "3"], "+", "2"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "2"]], "}"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"]]], ")"]], " ", SubscriptBox["aa", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "2"]]], ")"]], " ", SubscriptBox["aa", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "3"]]], ")"]], " ", SubscriptBox["aa", "4"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "4"]]], ")"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "+", "2"]], ",", RowBox[List[SubscriptBox["aa", "2"], "+", "2"]], ",", RowBox[List[SubscriptBox["aa", "3"], "+", "2"]], ",", RowBox[List[SubscriptBox["aa", "4"], "+", "2"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["bb", "1"], "+", "2"]], ",", RowBox[List[SubscriptBox["bb", "2"], "+", "2"]], ",", RowBox[List[SubscriptBox["bb", "3"], "+", "2"]]]], "}"]], ",", "z"]], "]"]]]], RowBox[List[SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "1"]]], ")"]], " ", SubscriptBox["bb", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]], " ", SubscriptBox["bb", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "3"]]], ")"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|