  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.28.26.0005.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3], 
    Subscript[a, 4]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, 
   z] == (Product[Gamma[Subscript[b, k]], {k, 1, 3}]/
     (Pi Sin[Subscript[\[Psi], 3] Pi] Product[Gamma[Subscript[a, k]], 
       {k, 1, 4}])) Sum[(Product[Sin[Pi (Subscript[b, j] - Subscript[a, k])], 
        {k, 1, 4}]/Product[If[k != j, Sin[Pi (Subscript[b, j] - 
            Subscript[b, k])], 1], {k, 1, 3}]) 
      MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2], 
         1 - Subscript[a, 3], 1 - Subscript[a, 4]}, {}}, 
       {{0, 1 - Subscript[b, j]}, {1 - Subscript[b, 1], \[Ellipsis], 
         1 - Subscript[b, j - 1], 1 - Subscript[b, j + 1], \[Ellipsis], 
         1 - Subscript[b, 3]}}, z], {j, 1, 3}] - 
   ((Pi Product[Gamma[Subscript[b, k]], {k, 1, 3}])/
     (Sin[Subscript[\[Psi], 3] Pi] Product[Gamma[Subscript[a, k]], 
       {k, 1, 4}])) (MeijerG[{{}, {1 - Subscript[a, 1], 1 - Subscript[a, 2], 
        1 - Subscript[a, 3], 1 - Subscript[a, 4]}}, 
      {{0, 1 - Subscript[b, 1], 1 - Subscript[b, 2], 1 - Subscript[b, 3]}, 
       {}}, z] + ((1 - z)^Subscript[\[Psi], 3] 
       MeijerG[{{1 - Subscript[a, 1], 1 - Subscript[a, 2], 
          1 - Subscript[a, 3], 1 - Subscript[a, 4]}, {}}, 
        {{}, {0, 1 - Subscript[b, 1], 1 - Subscript[b, 2], 
          1 - Subscript[b, 3]}}, z])/(z - 1)^Subscript[\[Psi], 3]) /; 
 Subscript[\[Psi], 3] == Sum[Subscript[b, j], {j, 1, 3}] - 
    Sum[Subscript[a, j], {j, 1, 4}] && 
   !IntervalMemberQ[Interval[{-1, 0}], z] && 
   !Element[Subscript[\[Psi], 3], Integers] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List["\[Pi]", " ", RowBox[List["Sin", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], " ", "\[Pi]"]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "3"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["a", "k"]]], ")"]]]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["If", "[", RowBox[List[RowBox[List["k", "\[NotEqual]", "j"]], ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[SubscriptBox["b", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]], ",", "1"]], "]"]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "j"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "-", SubscriptBox["b", RowBox[List["j", "-", "1"]]]]], ",", RowBox[List["1", "-", SubscriptBox["b", RowBox[List["j", "+", "1"]]]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]]]], "}"]], ",", "z"]], "]"]]]]]]]], "-", "\[IndentingNewLine]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List[RowBox[List["Sin", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], " ", "\[Pi]"]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]], "\[Times]", "\[IndentingNewLine]", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "3"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["-", SubscriptBox["\[Psi]", "3"]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["a", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "3"]]]]], "}"]]]], "}"]], ",", "z"]], "]"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[Psi]", "3"], "\[Equal]", RowBox[List[RowBox[List[StyleBox[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "3"], Rule[LimitsPositioningTokens, List["\[Sum]", "\[Product]", "\[Intersection]", "\[Union]", "\[UnionPlus]", "\[Wedge]", "\[Vee]", "lim", "max", "min", "\[CirclePlus]", "\[CircleMinus]", "\[CircleTimes]", "\[CircleDot]"]]], SubscriptBox["b", "j"]]], "-", RowBox[List[StyleBox[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "4"], Rule[LimitsPositioningTokens, List["\[Sum]", "\[Product]", "\[Intersection]", "\[Union]", "\[UnionPlus]", "\[Wedge]", "\[Vee]", "lim", "max", "min", "\[CirclePlus]", "\[CircleMinus]", "\[CircleTimes]", "\[CircleDot]"]]], SubscriptBox["a", "j"]]]]]]], "\[And]", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "1"]], ",", "0"]], "}"]], "]"]], ",", "z"]], "]"]], "]"]], "\[And]", RowBox[List["Not", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "\[Element]", "Integers"]], "]"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 4 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <mrow>  <mfrac>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <munderover>  <mo> ∏ </mo>  <munder>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> ≠ </mo>  <mi> j </mi>  </mrow>  </munder>  <mn> 3 </mn>  </munderover>  <mrow>  <mi> sin </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 4 </mn>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 4 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mrow>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["2", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List[TagBox[RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["b", "j"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "1"]]]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", RowBox[List["j", "-", "1"]]]]], MeijerG, Rule[Editable, True]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", RowBox[List["j", "+", "1"]]]]], MeijerG, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "q"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> sin </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 4 </mn>  </mrow>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mn> 4 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["0", ",", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 4 </mn>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 4 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["4", ",", "0"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", SubscriptBox["a", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "3"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["a", "4"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "1"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", SubscriptBox["b", "3"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </munderover>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> z </mi>  <mo> ∉ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> FormBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms>  </ms>  <apply>  <ci> FormBox </ci>  <ms> 4 </ms>  <ci> TraditionalForm </ci>  </apply>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> F </ms>  <apply>  <ci> FormBox </ci>  <ms> 3 </ms>  <ci> TraditionalForm </ci>  </apply>  </apply>  </list>  </apply>  <ms> ⁡ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 3 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 4 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <apply>  <ci> InterpretTemplate </ci>  <apply>  <ci> Function </ci>  <list>  <apply>  <ci> SlotSequence </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  </apply>  <ms> ; </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 2 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 3 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <apply>  <ci> InterpretTemplate </ci>  <apply>  <ci> Function </ci>  <list>  <apply>  <ci> SlotSequence </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  </apply>  <ms> ; </ms>  <apply>  <ci> TagBox </ci>  <ms> z </ms>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> InterpretTemplate </ci>  <apply>  <ci> Function </ci>  <apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Slot </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Slot </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Slot </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <false />  </apply>  </apply>  <ci> HypergeometricPFQ </ci>  </apply>  <ms> ⩵ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∏ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> 3 </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> k </ms>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> π </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> sin </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> 3 </ms>  </apply>  <ms> π </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∏ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> 4 </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> k </ms>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> 3 </ms>  </apply>  <apply>  <ci> ErrorBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∏ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> 4 </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> sin </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> π </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> j </ms>  </apply>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> k </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∏ </ms>  <apply>  <ci> UnderscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> ≠ </ms>  <ms> j </ms>  </list>  </apply>  </apply>  <ms> 3 </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> sin </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> π </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> j </ms>  </apply>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> k </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <apply>  <ci> TagBox </ci>  <ms> G </ms>  <ci> MeijerG </ci>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> 4 </ms>  <ms> , </ms>  <ms> 4 </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> 2 </ms>  <ms> , </ms>  <ms> 4 </ms>  </list>  </apply>  </apply>  <ms> ⁡ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> z </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> ❘ </ms>  <apply>  <ci> GridBox </ci>  <list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 4 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 0 </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> j </ms>  </apply>  </list>  </apply>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <ms> … </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <ms> … </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </list>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </apply>  </list>  </apply>  </list>  </apply>  <ms> - </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> π </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∏ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> 3 </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> k </ms>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> sin </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> 3 </ms>  </apply>  <ms> π </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∏ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> 4 </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> k </ms>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SuperscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <ms> z </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> 3 </ms>  </apply>  </apply>  <apply>  <ci> SuperscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> z </ms>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <apply>  <ci> TagBox </ci>  <ms> G </ms>  <ci> MeijerG </ci>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> 4 </ms>  <ms> , </ms>  <ms> 4 </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> 0 </ms>  <ms> , </ms>  <ms> 4 </ms>  </list>  </apply>  </apply>  <ms> ⁡ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> z </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> ❘ </ms>  <apply>  <ci> GridBox </ci>  <list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 4 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> 0 </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 2 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </list>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <apply>  <ci> TagBox </ci>  <ms> G </ms>  <ci> MeijerG </ci>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> 4 </ms>  <ms> , </ms>  <ms> 4 </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> 4 </ms>  <ms> , </ms>  <ms> 0 </ms>  </list>  </apply>  </apply>  <ms> ⁡ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> z </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> ❘ </ms>  <apply>  <ci> GridBox </ci>  <list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 4 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </list>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> 0 </ms>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 2 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  </list>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ci> MeijerG </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> /; </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> 3 </ms>  </apply>  <ms> ⩵ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> 3 </ms>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> j </ms>  </apply>  </list>  </apply>  <ms> - </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> 4 </ms>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> j </ms>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> ∧ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> z </ms>  <ms> ∉ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> , </ms>  <ms> 0 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> ∧ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> 3 </ms>  </apply>  <ms> ∉ </ms>  <apply>  <ci> TagBox </ci>  <ms> ℤ </ms>  <apply>  <ci> Function </ci>  <integers />  </apply>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ci> TraditionalForm </ci>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "3"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["a", "k"]]], ")"]]]], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["aa", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["bb", "j"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["bb", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "-", SubscriptBox["b", RowBox[List["j", "-", "1"]]]]], ",", RowBox[List["1", "-", SubscriptBox["b", RowBox[List["j", "+", "1"]]]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "-", SubscriptBox["bb", "3"]]]]], "}"]]]], "}"]], ",", "z"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["If", "[", RowBox[List[RowBox[List["k", "\[NotEqual]", "j"]], ",", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "j"], "-", SubscriptBox["b", "k"]]], ")"]]]], "]"]], ",", "1"]], "]"]]]]]]]]], RowBox[List["\[Pi]", " ", RowBox[List["Sin", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], " ", "\[Pi]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["aa", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "4"]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "3"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["-", SubscriptBox["\[Psi]", "3"]]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", SubscriptBox["aa", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "3"]]], ",", RowBox[List["1", "-", SubscriptBox["aa", "4"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["bb", "3"]]]]], "}"]]]], "}"]], ",", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["Sin", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], " ", "\[Pi]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[Psi]", "3"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "3"], SubscriptBox["bb", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "4"], SubscriptBox["a", "j"]]]]]]], "&&", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "1"]], ",", "0"]], "}"]], "]"]], ",", "z"]], "]"]]]], "&&", RowBox[List["!", RowBox[List[SubscriptBox["\[Psi]", "3"], "\[Element]", "Integers"]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |