|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z]
Specific values
Values at z==-1
For fixed a2, a3, a4, a5
|
|
|
|
|
|
|
http://functions.wolfram.com/07.29.03.0017.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{1, b, c, d, e}, {b + 1, c + 1, d + 1, e + 1}, -1] ==
((b c d e)/2) ((PolyGamma[(b + 1)/2] - PolyGamma[b/2])/
((c - b) (d - b) (e - b)) + (PolyGamma[(c + 1)/2] - PolyGamma[c/2])/
((b - c) (d - c) (e - c)) + (PolyGamma[(d + 1)/2] - PolyGamma[d/2])/
((b - d) (c - d) (e - d)) + (PolyGamma[(e + 1)/2] - PolyGamma[e/2])/
((b - e) (c - e) (d - e))) /; b != c && b != d && b != e && c != d &&
c != e && d != e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "b", ",", "c", ",", "d", ",", "e"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b", "+", "1"]], ",", RowBox[List["c", "+", "1"]], ",", RowBox[List["d", "+", "1"]], ",", RowBox[List["e", "+", "1"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["b", " ", "c", " ", "d", " ", "e"]], "2"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["b", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["c", "-", "b"]], ")"]], RowBox[List["(", RowBox[List["d", "-", "b"]], ")"]], RowBox[List["(", RowBox[List["e", "-", "b"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["c", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["c", "2"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], RowBox[List["(", RowBox[List["d", "-", "c"]], ")"]], RowBox[List["(", RowBox[List["e", "-", "c"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["d", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["d", "2"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "d"]], ")"]], RowBox[List["(", RowBox[List["c", "-", "d"]], ")"]], RowBox[List["(", RowBox[List["e", "-", "d"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["e", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["e", "2"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "e"]], ")"]], RowBox[List["(", RowBox[List["c", "-", "e"]], ")"]], RowBox[List["(", RowBox[List["d", "-", "e"]], ")"]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["b", "\[NotEqual]", "c"]], "\[And]", RowBox[List["b", "\[NotEqual]", "d"]], "\[And]", RowBox[List["b", "\[NotEqual]", "e"]], "\[And]", RowBox[List["c", "\[NotEqual]", "d"]], "\[And]", RowBox[List["c", "\[NotEqual]", "e"]], "\[And]", RowBox[List["d", "\[NotEqual]", "e"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 5 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> d </mi> <mo> , </mo> <mi> e </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["5", TraditionalForm]], SubscriptBox["F", FormBox["4", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["b", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["c", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["d", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["e", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["b", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["c", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["d", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["e", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mi> c </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mi> d </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mi> e </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> b </mi> <mo> ≠ </mo> <mi> c </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> b </mi> <mo> ≠ </mo> <mi> d </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> b </mi> <mo> ≠ </mo> <mi> e </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> c </mi> <mo> ≠ </mo> <mi> d </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> c </mi> <mo> ≠ </mo> <mi> e </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> d </mi> <mo> ≠ </mo> <mi> e </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <ci> b </ci> <ci> c </ci> <ci> d </ci> <ci> e </ci> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> </list> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <times /> <ci> b </ci> <ci> c </ci> <ci> d </ci> <ci> e </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <ci> c </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <ci> d </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <ci> e </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <neq /> <ci> b </ci> <ci> c </ci> </apply> <apply> <neq /> <ci> b </ci> <ci> d </ci> </apply> <apply> <neq /> <ci> b </ci> <ci> e </ci> </apply> <apply> <neq /> <ci> c </ci> <ci> d </ci> </apply> <apply> <neq /> <ci> c </ci> <ci> e </ci> </apply> <apply> <neq /> <ci> d </ci> <ci> e </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "b_", ",", "c_", ",", "d_", ",", "e_"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b_", "+", "1"]], ",", RowBox[List["c_", "+", "1"]], ",", RowBox[List["d_", "+", "1"]], ",", RowBox[List["e_", "+", "1"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["b", " ", "c", " ", "d", " ", "e"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["b", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["c", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["d", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["e", "-", "b"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["c", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["c", "2"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["d", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["e", "-", "c"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["d", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["d", "2"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "d"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "-", "d"]], ")"]], " ", RowBox[List["(", RowBox[List["e", "-", "d"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["e", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["e", "2"], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "e"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "-", "e"]], ")"]], " ", RowBox[List["(", RowBox[List["d", "-", "e"]], ")"]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["b", "\[NotEqual]", "c"]], "&&", RowBox[List["b", "\[NotEqual]", "d"]], "&&", RowBox[List["b", "\[NotEqual]", "e"]], "&&", RowBox[List["c", "\[NotEqual]", "d"]], "&&", RowBox[List["c", "\[NotEqual]", "e"]], "&&", RowBox[List["d", "\[NotEqual]", "e"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|