Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] > Specific values > Values at z==-1 > For fixed a2, a3, a4





http://functions.wolfram.com/07.29.03.0018.01









  


  










Input Form





HypergeometricPFQ[{1, b, c, d, b}, {b + 1, c + 1, d + 1, b + 1}, -1] == (-((b^2 c d)/2)) (((c + d - 2 b)/((b - c)^2 (b - d)^2)) (PolyGamma[(b + 1)/2] - PolyGamma[b/2]) + (PolyGamma[1, (b + 1)/2] - PolyGamma[1, b/2])/(2 (b - c) (b - d)) - (PolyGamma[(c + 1)/2] - PolyGamma[c/2])/((b - c)^2 (d - c)) - (PolyGamma[(d + 1)/2] - PolyGamma[d/2])/((b - d)^2 (c - d))) /; b != c && b != d && c != d










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "b", ",", "c", ",", "d", ",", "b"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b", "+", "1"]], ",", RowBox[List["c", "+", "1"]], ",", RowBox[List["d", "+", "1"]], ",", RowBox[List["b", "+", "1"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", "c", " ", "d"]], "2"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["c", "+", "d", "-", RowBox[List["2", "b"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "d"]], ")"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["b", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["b", "2"], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", FractionBox[RowBox[List["b", "+", "1"]], "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", FractionBox["b", "2"]]], "]"]]]], RowBox[List["2", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "d"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["c", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["c", "2"], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"], RowBox[List["(", RowBox[List["d", "-", "c"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["d", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["d", "2"], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "d"]], ")"]], "2"], RowBox[List["(", RowBox[List["c", "-", "d"]], ")"]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["b", "\[NotEqual]", "c"]], "\[And]", RowBox[List["b", "\[NotEqual]", "d"]], "\[And]", RowBox[List["c", "\[NotEqual]", "d"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 5 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> d </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;5&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;4&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;c&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;d&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;d&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mi> c </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mi> d </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8800; </mo> <mi> c </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> b </mi> <mo> &#8800; </mo> <mi> d </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> c </mi> <mo> &#8800; </mo> <mi> d </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <ci> b </ci> <ci> c </ci> <ci> d </ci> <ci> b </ci> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </list> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> <ci> d </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <ci> c </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <ci> d </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <neq /> <ci> b </ci> <ci> c </ci> </apply> <apply> <neq /> <ci> b </ci> <ci> d </ci> </apply> <apply> <neq /> <ci> c </ci> <ci> d </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "b_", ",", "c_", ",", "d_", ",", "b_"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b_", "+", "1"]], ",", RowBox[List["c_", "+", "1"]], ",", RowBox[List["d_", "+", "1"]], ",", RowBox[List["b_", "+", "1"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], " ", "c", " ", "d"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "+", "d", "-", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["b", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["b", "2"], "]"]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "d"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", FractionBox[RowBox[List["b", "+", "1"]], "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", FractionBox["b", "2"]]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "d"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["c", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["c", "2"], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["d", "-", "c"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["d", "+", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox["d", "2"], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", "d"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["c", "-", "d"]], ")"]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["b", "\[NotEqual]", "c"]], "&&", RowBox[List["b", "\[NotEqual]", "d"]], "&&", RowBox[List["c", "\[NotEqual]", "d"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29