|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.29.03.0062.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{2/3, 1, 1, 1, 4/3}, {5/3, 2, 2, 7/3}, 1] ==
(4/3) (27 - 3 Sqrt[3] - Pi^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", "1", ",", "1", ",", "1", ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "3"], ",", "2", ",", "2", ",", FractionBox["7", "3"]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[FractionBox["4", "3"], " ", RowBox[List["(", RowBox[List["27", "-", RowBox[List["3", " ", SqrtBox["3"]]], " ", "-", SuperscriptBox["\[Pi]", "2"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 5 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["5", TraditionalForm]], SubscriptBox["F", FormBox["4", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["2", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["4", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["5", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["7", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 27 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> - </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </list> <list> <cn type='rational'> 5 <sep /> 3 </cn> <cn type='integer'> 2 </cn> <cn type='integer'> 2 </cn> <cn type='rational'> 7 <sep /> 3 </cn> </list> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <plus /> <cn type='integer'> 27 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", "1", ",", "1", ",", "1", ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "3"], ",", "2", ",", "2", ",", FractionBox["7", "3"]]], "}"]], ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["4", "3"], " ", RowBox[List["(", RowBox[List["27", "-", RowBox[List["3", " ", SqrtBox["3"]]], "-", SuperscriptBox["\[Pi]", "2"]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|