|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.29.06.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3],
Subscript[a, 4], Subscript[a, 5]}, {Subscript[b, 1], Subscript[b, 2],
Subscript[b, 3], Subscript[b, 4]}, z] ==
(Product[Gamma[Subscript[b, k]], {k, 1, 4}]/Product[Gamma[Subscript[a, k]],
{k, 1, 5}]) (Sum[Subscript[g, k][0] (1 - z)^k, {k, 0, Infinity}] +
(1 - z)^Subscript[\[Psi], 4] Sum[Subscript[g, k][Subscript[\[Psi], 4]]
(1 - z)^k, {k, 0, Infinity}]) /;
Subscript[g, k][r] == ((-1)^k/k!) Gamma[Subscript[a, 1] + r + k]
Gamma[Subscript[a, 2] + r + k] Gamma[Subscript[\[Psi], 4] - 2 r - k]
Sum[((Pochhammer[Subscript[\[Psi], 4] - r - k, j]
Pochhammer[Subscript[b, 2] + Subscript[b, 3] + Subscript[b, 4] -
Subscript[a, 3] - Subscript[a, 4] - Subscript[a, 5], j]
Pochhammer[Subscript[b, 1] - Subscript[a, 3], j])/
(Gamma[Subscript[\[Psi], 4] + Subscript[a, 1] + j]
Gamma[Subscript[\[Psi], 4] + Subscript[a, 2] + j] j!))
Sum[((Pochhammer[Subscript[b, 4] + Subscript[b, 3] - Subscript[a, 5] -
Subscript[a, 4], s] Pochhammer[Subscript[b, 2] - Subscript[a, 4],
s] Pochhammer[-j, s])/(Pochhammer[Subscript[b, 2] +
Subscript[b, 3] + Subscript[b, 4] - Subscript[a, 3] -
Subscript[a, 4] - Subscript[a, 5], s] Pochhammer[
1 - Subscript[b, 1] + Subscript[a, 3] - j, s] s!))
HypergeometricPFQ[{Subscript[b, 4] - Subscript[a, 5],
Subscript[b, 3] - Subscript[a, 5], -s},
{Subscript[b, 4] + Subscript[b, 3] - Subscript[a, 5] -
Subscript[a, 4], 1 - Subscript[b, 2] + Subscript[a, 4] - s}, 1],
{s, 0, j}], {j, 0, Infinity}] && Subscript[\[Psi], 4] ==
Subscript[b, 1] + Subscript[b, 2] + Subscript[b, 3] + Subscript[b, 4] -
Subscript[a, 1] - Subscript[a, 2] - Subscript[a, 3] - Subscript[a, 4] -
Subscript[a, 5] && !Element[Subscript[\[Psi], 4], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"], ",", SubscriptBox["a", "5"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"], ",", SubscriptBox["b", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "5"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[SubscriptBox["g", "k"], "[", "0", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "k"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "4"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[SubscriptBox["g", "k"], "[", SubscriptBox["\[Psi]", "4"], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "k"]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["g", "k"], "[", "r", "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["k", "!"]]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "+", "r", "+", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "+", "r", "+", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "4"], "-", RowBox[List["2", " ", "r"]], "-", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["\[Psi]", "4"], "-", "r", "-", "k"]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "3"]]], ",", "j"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "4"], "+", SubscriptBox["a", "1"], "+", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "4"], "+", SubscriptBox["a", "2"], "+", "j"]], "]"]], RowBox[List["j", "!"]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], "j"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "4"], "+", SubscriptBox["b", "3"], "-", SubscriptBox["a", "5"], "-", SubscriptBox["a", "4"]]], ",", "s"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "4"]]], ",", "s"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "j"]], ",", "s"]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["a", "3"], "-", "j"]], ",", "s"]], "]"]], RowBox[List["s", "!"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["b", "4"], "-", SubscriptBox["a", "5"]]], ",", RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["a", "5"]]], ",", RowBox[List["-", "s"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["b", "4"], "+", SubscriptBox["b", "3"], "-", SubscriptBox["a", "5"], "-", SubscriptBox["a", "4"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"], "+", SubscriptBox["a", "4"], "-", "s"]]]], "}"]], ",", "1"]], "]"]]]]]]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "4"], "\[Equal]", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]]]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[SubscriptBox["\[Psi]", "4"], ",", "Integers"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 5 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 5 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 4 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["5", TraditionalForm]], SubscriptBox["F", FormBox["4", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "5"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 5 </mn> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msub> <mi> ψ </mi> <mn> 4 </mn> </msub> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <msub> <mi> g </mi> <mi> k </mi> </msub> <mo> ( </mo> <msub> <mi> ψ </mi> <mn> 4 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <msub> <mi> g </mi> <mi> k </mi> </msub> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <msub> <mi> g </mi> <mi> k </mi> </msub> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> ψ </mi> <mn> 4 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> ψ </mi> <mn> 4 </mn> </msub> <mo> - </mo> <mi> r </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["\[Psi]", "4"], "-", "r", "-", "k"]], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 5 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "3"]]], ")"]], "j"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> ψ </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> ψ </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 5 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]], ")"]], "s"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "4"]]], ")"]], "s"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "j"]], ")"]], "s"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 5 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]], ")"]], "s"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "1"], "-", "j", "+", "1"]], ")"]], "s"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> s </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 5 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 5 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 5 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "4"], "-", SubscriptBox["a", "5"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["a", "5"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["-", "s"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "4"], "-", SubscriptBox["b", "2"], "-", "s", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> ψ </mi> <mn> 4 </mn> </msub> <mo> ⩵ </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 5 </mn> </msub> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> ψ </mi> <mn> 4 </mn> </msub> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 4 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 5 </cn> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <ci> k </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <ci> k </ci> </apply> <ci> r </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> r </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <factorial /> <ci> j </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <ci> s </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> s </ci> </apply> <apply> <factorial /> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <cn type='integer'> 1 </cn> </apply> </list> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 4 </cn> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"], ",", SubscriptBox["a_", "4"], ",", SubscriptBox["a_", "5"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"], ",", SubscriptBox["b_", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "4"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[SubscriptBox["g", "k"], "[", "0", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "k"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "4"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[SubscriptBox["g", "k"], "[", SubscriptBox["\[Psi]", "4"], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "k"]]]]]]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "5"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["g", "k"], "[", "r", "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "+", "r", "+", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "+", "r", "+", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "4"], "-", RowBox[List["2", " ", "r"]], "-", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["\[Psi]", "4"], "-", "r", "-", "k"]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "3"]]], ",", "j"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], "j"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "4"], "+", SubscriptBox["b", "3"], "-", SubscriptBox["a", "5"], "-", SubscriptBox["a", "4"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "4"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "j"]], ",", "s"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["b", "4"], "-", SubscriptBox["a", "5"]]], ",", RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["a", "5"]]], ",", RowBox[List["-", "s"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["b", "4"], "+", SubscriptBox["b", "3"], "-", SubscriptBox["a", "5"], "-", SubscriptBox["a", "4"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"], "+", SubscriptBox["a", "4"], "-", "s"]]]], "}"]], ",", "1"]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]], ",", "s"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["a", "3"], "-", "j"]], ",", "s"]], "]"]], " ", RowBox[List["s", "!"]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "4"], "+", SubscriptBox["a", "1"], "+", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "4"], "+", SubscriptBox["a", "2"], "+", "j"]], "]"]], " ", RowBox[List["j", "!"]]]]]]]]], RowBox[List["k", "!"]]]]], "&&", RowBox[List[SubscriptBox["\[Psi]", "4"], "\[Equal]", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"], "+", SubscriptBox["b", "4"], "-", SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"], "-", SubscriptBox["a", "4"], "-", SubscriptBox["a", "5"]]]]], "&&", RowBox[List["!", RowBox[List[SubscriptBox["\[Psi]", "4"], "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|