Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > Specialized values > For fixed z and with symbolical integers in parameters > For fixed z and a=n+1/2, b=m+1/2





http://functions.wolfram.com/07.33.03.0063.01









  


  










Input Form





HypergeometricU[n + 1/2, 3/2, z] == (1/Pochhammer[1/2, n]) ((Sqrt[Pi]/(2 z)) E^z (LaguerreL[-1 + n, -(1/2), -z] + 2 n LaguerreL[n, -(3/2), -z]) Erf[Sqrt[z]] + (1/(2 Sqrt[z])) Sum[(1/(p + 1)) LaguerreL[-2 + n - p, 1/2 + p, -z] LaguerreL[p, -(1/2) - p, z], {p, 0, -2 + n}] + (n/Sqrt[z]) Sum[(1/(p + 1)) LaguerreL[n - p - 1, -(1/2) + p, -z] LaguerreL[p, -(1/2) - p, z], {p, 0, n - 1}]) - (-1)^n E^z Gamma[1/2 - n] LaguerreL[-1 + n, 1/2, -z] /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", FractionBox["3", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "n"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[SqrtBox["\[Pi]"], RowBox[List["2", "z"]]], SuperscriptBox["\[ExponentialE]", "z"], RowBox[List["(", RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "+", RowBox[List["2", "n", " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["-", FractionBox["3", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]], RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", SqrtBox["z"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", "n"]]], RowBox[List[FractionBox["1", RowBox[List["p", "+", "1"]]], RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "n", "-", "p"]], ",", RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", "z"]], "]"]]]]]]]], "+", RowBox[List[FractionBox["n", SqrtBox["z"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox["1", RowBox[List["p", "+", "1"]]], RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "p", "-", "1"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "p"]], ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", "z"]], "]"]]]]]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "n"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", FractionBox["1", "2"], ",", RowBox[List["-", "z"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;n&quot;], Pochhammer] </annotation> </semantics> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mi> n </mi> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> n </mi> <msqrt> <mi> z </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msubsup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <apply> <ci> LaguerreL </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> LaguerreL </ci> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> p </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> LaguerreL </ci> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> LaguerreL </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List["n_", "+", FractionBox["1", "2"]]], ",", FractionBox["3", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "+", RowBox[List["2", " ", "n", " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", RowBox[List["-", FractionBox["3", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], RowBox[List["2", " ", "z"]]], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", "n"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "+", "n", "-", "p"]], ",", RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", "z"]], "]"]]]], RowBox[List["p", "+", "1"]]]]], RowBox[List["2", " ", SqrtBox["z"]]]], "+", FractionBox[RowBox[List["n", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List["n", "-", "p", "-", "1"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", "p"]], ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "p"]], ",", "z"]], "]"]]]], RowBox[List["p", "+", "1"]]]]]]], SqrtBox["z"]]]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "n"]], "]"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "n"]], "]"]], " ", RowBox[List["LaguerreL", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", FractionBox["1", "2"], ",", RowBox[List["-", "z"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Contributed by





Brychkov Yu.A. (2006)










Date Added to functions.wolfram.com (modification date)





2007-05-02