Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=-11/2





http://functions.wolfram.com/07.33.03.0104.01









  


  










Input Form





HypergeometricU[-(11/2), 2, z] == (1/(128 Sqrt[Pi])) (E^(z/2) ((135135 + 2 z (-218295 + 4 z (53139 + 2 z (-10554 + z (1875 + 2 z (-73 + 2 z)))))) BesselK[0, z/2] + (10395 + 2 z (-95721 + 4 z (36843 + 2 z (-8886 + z (1735 + 2 z (-71 + 2 z)))))) BesselK[1, z/2]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["128", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["135135", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["53139", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "10554"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1875", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "73"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["10395", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "95721"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["36843", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8886"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1735", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "71"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 73 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1875 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 10554 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 53139 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 218295 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 135135 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 71 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1735 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 8886 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 36843 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 95721 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 10395 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -73 </cn> </apply> </apply> <cn type='integer'> 1875 </cn> </apply> </apply> <cn type='integer'> -10554 </cn> </apply> </apply> <cn type='integer'> 53139 </cn> </apply> </apply> <cn type='integer'> -218295 </cn> </apply> </apply> <cn type='integer'> 135135 </cn> </apply> <apply> <ci> BesselK </ci> <cn type='integer'> 0 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -71 </cn> </apply> </apply> <cn type='integer'> 1735 </cn> </apply> </apply> <cn type='integer'> -8886 </cn> </apply> </apply> <cn type='integer'> 36843 </cn> </apply> </apply> <cn type='integer'> -95721 </cn> </apply> </apply> <cn type='integer'> 10395 </cn> </apply> <apply> <ci> BesselK </ci> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["135135", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["53139", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "10554"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1875", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "73"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["10395", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "95721"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["36843", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8886"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1735", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "71"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]]]], ")"]]]], RowBox[List["128", " ", SqrtBox["\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02