Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=3/2





http://functions.wolfram.com/07.33.03.0421.01









  


  










Input Form





HypergeometricU[3/2, -(9/2), -z] == (1/(23040 Sqrt[z])) ((-2 E^z Sqrt[-z^2] (-945 + 2 z (-315 + 4 z (-39 + 2 z (-9 + z (-5 + 2 z))))) + Sqrt[Pi] Sqrt[z] (945 + 4 z (315 + z (225 + 4 z (30 + z (15 - 4 (-3 + z) z))))) + Sqrt[Pi] Sqrt[-z] (-945 + 4 z (-315 + z (-225 + 4 z (-30 + z (-15 + 4 (-3 + z) z))))) Erfi[Sqrt[z]])/E^z)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["23040", " ", SqrtBox["z"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "945"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "315"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "39"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["945", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["225", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["30", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["15", "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "945"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "315"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "225"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 23040 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 39 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 945 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 15 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 30 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 225 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 945 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 30 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 225 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 945 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 23040 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -5 </cn> </apply> </apply> <cn type='integer'> -9 </cn> </apply> </apply> <cn type='integer'> -39 </cn> </apply> </apply> <cn type='integer'> -315 </cn> </apply> </apply> <cn type='integer'> -945 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 15 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 30 </cn> </apply> </apply> <cn type='integer'> 225 </cn> </apply> </apply> <cn type='integer'> 315 </cn> </apply> </apply> <cn type='integer'> 945 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -3 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -15 </cn> </apply> </apply> <cn type='integer'> -30 </cn> </apply> </apply> <cn type='integer'> -225 </cn> </apply> </apply> <cn type='integer'> -315 </cn> </apply> </apply> <cn type='integer'> -945 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "945"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "315"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "39"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["945", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["225", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["30", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["15", "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "945"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "315"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "225"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["23040", " ", SqrtBox["z"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02