Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=5/2





http://functions.wolfram.com/07.33.03.0507.01









  


  










Input Form





HypergeometricU[5/2, -(11/2), z] == (1/7741440) (-2 Sqrt[z] (-31185 + 2 z (12285 + 2 z (-3339 + 2 z (795 + 2 z (-195 + 2 z (63 + 46 z + 4 z^2)))))) + E^z Sqrt[Pi] (31185 + 16 z (-2835 + z (2205 + 2 z (-630 + z (315 + 8 z (-21 + z (21 + z (12 + z)))))))) Erfc[Sqrt[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["5", "2"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "7741440"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "31185"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["12285", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3339"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["795", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "195"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["63", "+", RowBox[List["46", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["31185", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2835"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["2205", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["21", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["12", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfc", "[", SqrtBox["z"], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 7741440 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 12 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 630 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2205 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2835 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 31185 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 46 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 63 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 195 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 795 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3339 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 12285 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 31185 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 5 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 7741440 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <cn type='integer'> 21 </cn> </apply> </apply> <cn type='integer'> -21 </cn> </apply> </apply> <cn type='integer'> 315 </cn> </apply> </apply> <cn type='integer'> -630 </cn> </apply> </apply> <cn type='integer'> 2205 </cn> </apply> </apply> <cn type='integer'> -2835 </cn> </apply> </apply> <cn type='integer'> 31185 </cn> </apply> <apply> <ci> Erfc </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 46 </cn> <ci> z </ci> </apply> <cn type='integer'> 63 </cn> </apply> </apply> <cn type='integer'> -195 </cn> </apply> </apply> <cn type='integer'> 795 </cn> </apply> </apply> <cn type='integer'> -3339 </cn> </apply> </apply> <cn type='integer'> 12285 </cn> </apply> </apply> <cn type='integer'> -31185 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["5", "2"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "31185"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["12285", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3339"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["795", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "195"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["63", "+", RowBox[List["46", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["31185", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2835"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["2205", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["21", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["12", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfc", "[", SqrtBox["z"], "]"]]]]]], "7741440"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02