|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.33.03.0691.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricU[4, 9/2, -z] == (1/(48 z^4))
((-2 E^z z (15 + 4 z (2 + z)) + Sqrt[Pi] Sqrt[-z]
(15 + 2 z (9 + 6 z + 4 z^2)) + Sqrt[Pi] Sqrt[z]
(15 + 2 z (9 + 6 z + 4 z^2)) Erfi[Sqrt[z]])/E^z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List["4", ",", FractionBox["9", "2"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["48", " ", SuperscriptBox["z", "4"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", "z", " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["2", "+", "z"]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["6", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["6", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox["U", HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> , </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='integer'> 4 </cn> <cn type='rational'> 9 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> 15 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List["4", ",", FractionBox["9", "2"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", "z", " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["2", "+", "z"]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["6", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["6", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["48", " ", SuperscriptBox["z", "4"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|