Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=9/2





http://functions.wolfram.com/07.33.03.0699.01









  


  










Input Form





HypergeometricU[9/2, -(11/2), -z] == (1/(24385536000 z)) ((z (2 E^z Sqrt[-z] (1091475 + 2 z (628425 + 8 z (59535 + 2 z (19845 + z (13965 + 2 z (6615 + 4 z (-2805 + z (754 + z (-69 + 2 z))))))))) + Sqrt[Pi] (1091475 + 4 z (496125 + z (496125 + 8 z (47250 + z (33075 + 4 z (6615 + z (11025 + 2 z (-6300 + z (1575 + 4 (-35 + z) z)))))))))) - Sqrt[Pi] Sqrt[-z^2] (1091475 + 4 z (496125 + z (496125 + 8 z (47250 + z (33075 + 4 z (6615 + z (11025 + 2 z (-6300 + z (1575 + 4 (-35 + z) z))))))))) Erfi[Sqrt[z]])/E^z)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["24385536000", " ", "z"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List["1091475", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["628425", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["59535", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["19845", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["13965", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["6615", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2805"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["754", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "69"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["1091475", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["47250", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["6615", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["11025", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6300"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1575", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "35"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["1091475", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["47250", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["6615", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["11025", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6300"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1575", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "35"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 24385536000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 69 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 754 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2805 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6615 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 13965 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 19845 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 59535 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 628425 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1091475 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 35 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1575 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6300 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 11025 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6615 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 33075 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 47250 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 496125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 496125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1091475 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 35 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1575 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6300 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 11025 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6615 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 33075 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 47250 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 496125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 496125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1091475 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 9 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 24385536000 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -69 </cn> </apply> </apply> <cn type='integer'> 754 </cn> </apply> </apply> <cn type='integer'> -2805 </cn> </apply> </apply> <cn type='integer'> 6615 </cn> </apply> </apply> <cn type='integer'> 13965 </cn> </apply> </apply> <cn type='integer'> 19845 </cn> </apply> </apply> <cn type='integer'> 59535 </cn> </apply> </apply> <cn type='integer'> 628425 </cn> </apply> </apply> <cn type='integer'> 1091475 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -35 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 1575 </cn> </apply> </apply> <cn type='integer'> -6300 </cn> </apply> </apply> <cn type='integer'> 11025 </cn> </apply> </apply> <cn type='integer'> 6615 </cn> </apply> </apply> <cn type='integer'> 33075 </cn> </apply> </apply> <cn type='integer'> 47250 </cn> </apply> </apply> <cn type='integer'> 496125 </cn> </apply> </apply> <cn type='integer'> 496125 </cn> </apply> </apply> <cn type='integer'> 1091475 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -35 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 1575 </cn> </apply> </apply> <cn type='integer'> -6300 </cn> </apply> </apply> <cn type='integer'> 11025 </cn> </apply> </apply> <cn type='integer'> 6615 </cn> </apply> </apply> <cn type='integer'> 33075 </cn> </apply> </apply> <cn type='integer'> 47250 </cn> </apply> </apply> <cn type='integer'> 496125 </cn> </apply> </apply> <cn type='integer'> 496125 </cn> </apply> </apply> <cn type='integer'> 1091475 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List["1091475", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["628425", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["59535", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["19845", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["13965", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["6615", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2805"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["754", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "69"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["1091475", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["47250", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["6615", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["11025", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6300"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1575", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "35"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["1091475", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["496125", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["47250", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["6615", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["11025", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6300"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1575", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "35"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["24385536000", " ", "z"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02