Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=9/2





http://functions.wolfram.com/07.33.03.0700.01









  


  










Input Form





HypergeometricU[9/2, -5, z] == (1/(68746552875 Sqrt[Pi])) (128 E^(z/2) z (z (12600 + z (-17640 + z (15435 + 8 z (-1470 + z (15435 + 2 z (6300 + z (1511 + 4 z (34 + z)))))))) BesselK[0, z/2] - (-50400 + z (70560 + z (-63315 + z (49245 + 8 z (-5145 + z (6615 + 2 z (17 + z) (293 + 4 z (16 + z)))))))) BesselK[1, z/2]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", "5"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["68746552875", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List["128", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List["12600", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "17640"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["15435", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1470"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["15435", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["6300", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1511", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["34", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "50400"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["70560", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "63315"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["49245", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5145"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6615", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["17", "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["293", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["16", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 68746552875 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 34 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1511 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6300 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 15435 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1470 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 15435 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 17640 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 12600 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 17 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 293 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6615 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 5145 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 49245 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 63315 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 70560 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 50400 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 9 <sep /> 2 </cn> <cn type='integer'> -5 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 68746552875 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 34 </cn> </apply> </apply> <cn type='integer'> 1511 </cn> </apply> </apply> <cn type='integer'> 6300 </cn> </apply> </apply> <cn type='integer'> 15435 </cn> </apply> </apply> <cn type='integer'> -1470 </cn> </apply> </apply> <cn type='integer'> 15435 </cn> </apply> </apply> <cn type='integer'> -17640 </cn> </apply> </apply> <cn type='integer'> 12600 </cn> </apply> <apply> <ci> BesselK </ci> <cn type='integer'> 0 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 17 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <cn type='integer'> 293 </cn> </apply> </apply> <cn type='integer'> 6615 </cn> </apply> </apply> <cn type='integer'> -5145 </cn> </apply> </apply> <cn type='integer'> 49245 </cn> </apply> </apply> <cn type='integer'> -63315 </cn> </apply> </apply> <cn type='integer'> 70560 </cn> </apply> </apply> <cn type='integer'> -50400 </cn> </apply> <apply> <ci> BesselK </ci> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", "5"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["128", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List["12600", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "17640"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["15435", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1470"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["15435", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["6300", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1511", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["34", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "50400"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["70560", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "63315"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["49245", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5145"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6615", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["17", "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["293", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["16", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]]]], ")"]]]], RowBox[List["68746552875", " ", SqrtBox["\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02