  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.33.03.0711.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricU[9/2, -(5/2), -z] == 
 (1/496125) (8 (-z)^(7/2) (92385/64 - (40815 z)/16 + (33795 z^2)/16 - 
    (2025 z^3)/2 + (995 z^4)/4 - 27 z^5 + z^6 + 
    (1/(1024 z^4)) 
     (((1575 + 2 z (2205 + 2 z (2205 + 2 z (3675 + 2 z (-3675 + 
                2 z (735 - 98 z + 4 z^2)))))) (15 Sqrt[Pi] Sqrt[-z] - 
        2 E^z z (15 + 2 z (-5 + 2 z)) + 15 Sqrt[Pi] Sqrt[z] Erfi[Sqrt[z]]))/
      E^z))) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "496125"], RowBox[List["(", RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["7", "/", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox["92385", "64"], "-", FractionBox[RowBox[List["40815", " ", "z"]], "16"], "+", FractionBox[RowBox[List["33795", " ", SuperscriptBox["z", "2"]]], "16"], "-", FractionBox[RowBox[List["2025", " ", SuperscriptBox["z", "3"]]], "2"], "+", FractionBox[RowBox[List["995", " ", SuperscriptBox["z", "4"]]], "4"], "-", RowBox[List["27", " ", SuperscriptBox["z", "5"]]], "+", SuperscriptBox["z", "6"], "+", RowBox[List[FractionBox["1", RowBox[List["1024", " ", SuperscriptBox["z", "4"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List["1575", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["2205", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["2205", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["3675", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3675"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["735", "-", RowBox[List["98", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["15", " ", SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]]]], "-", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", "z", " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["15", " ", SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mi> U </mi>  <annotation encoding='Mathematica'> TagBox["U", HypergeometricU] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 9 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 5 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 496125 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 27 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 995 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mn> 4 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2025 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 33795 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mn> 16 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 40815 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 16 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mn> 92385 </mn>  <mn> 64 </mn>  </mfrac>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 1024 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 98 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 735 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 3675 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 3675 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 2205 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 2205 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 1575 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mi> z </mi>  </msup>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 15 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> erfi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricU </ci>  <cn type='rational'> 9 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 496125 </cn>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 27 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 995 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2025 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 33795 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 16 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 40815 </cn>  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 16 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 92385 <sep /> 64 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1024 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 98 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 735 </cn>  </apply>  </apply>  <cn type='integer'> -3675 </cn>  </apply>  </apply>  <cn type='integer'> 3675 </cn>  </apply>  </apply>  <cn type='integer'> 2205 </cn>  </apply>  </apply>  <cn type='integer'> 2205 </cn>  </apply>  </apply>  <cn type='integer'> 1575 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <power />  <exponentiale />  <ci> z </ci>  </apply>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -5 </cn>  </apply>  </apply>  <cn type='integer'> 15 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Erfi </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["7", "/", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox["92385", "64"], "-", FractionBox[RowBox[List["40815", " ", "z"]], "16"], "+", FractionBox[RowBox[List["33795", " ", SuperscriptBox["z", "2"]]], "16"], "-", FractionBox[RowBox[List["2025", " ", SuperscriptBox["z", "3"]]], "2"], "+", FractionBox[RowBox[List["995", " ", SuperscriptBox["z", "4"]]], "4"], "-", RowBox[List["27", " ", SuperscriptBox["z", "5"]]], "+", SuperscriptBox["z", "6"], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List["1575", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["2205", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["2205", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["3675", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3675"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["735", "-", RowBox[List["98", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["15", " ", SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]]]], "-", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", "z", " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["15", " ", SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["1024", " ", SuperscriptBox["z", "4"]]]]]], ")"]]]], "496125"]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |