Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=11/2





http://functions.wolfram.com/07.33.03.0782.01









  


  










Input Form





HypergeometricU[11/2, -6, z] == (256 E^(z/2) z ((-z) (-1360800 + z (1927800 + z (-1647135 + 8 z (144585 + z (-99225 + 2 z (530145 + z (467775 + 4 z (32871 + z (3957 + 210 z + 4 z^2))))))))) BesselK[0, z/2] + (5443200 + z (-7711200 + z (6758640 + z (-4867695 + 8 z (422415 + z (-337365 + 2 z (218295 + z (357639 + 4 z (29217 + z (3753 + 206 z + 4 z^2)))))))))) BesselK[1, z/2]))/(298841265347625 Sqrt[Pi])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", RowBox[List["-", "6"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["256", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "z"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1360800"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1927800", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1647135"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["144585", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "99225"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["530145", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["467775", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["32871", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["3957", "+", RowBox[List["210", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["5443200", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7711200"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6758640", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4867695"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["422415", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "337365"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["218295", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["357639", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["29217", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["3753", "+", RowBox[List["206", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["298841265347625", " ", SqrtBox["\[Pi]"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 298841265347625 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> z </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 206 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3753 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 29217 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 357639 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 218295 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 337365 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 422415 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 4867695 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6758640 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 7711200 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5443200 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 210 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3957 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 32871 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 467775 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 530145 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 99225 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 144585 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1647135 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1927800 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1360800 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='integer'> -6 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 298841265347625 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 206 </cn> <ci> z </ci> </apply> <cn type='integer'> 3753 </cn> </apply> </apply> <cn type='integer'> 29217 </cn> </apply> </apply> <cn type='integer'> 357639 </cn> </apply> </apply> <cn type='integer'> 218295 </cn> </apply> </apply> <cn type='integer'> -337365 </cn> </apply> </apply> <cn type='integer'> 422415 </cn> </apply> </apply> <cn type='integer'> -4867695 </cn> </apply> </apply> <cn type='integer'> 6758640 </cn> </apply> </apply> <cn type='integer'> -7711200 </cn> </apply> </apply> <cn type='integer'> 5443200 </cn> </apply> <apply> <ci> BesselK </ci> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 210 </cn> <ci> z </ci> </apply> <cn type='integer'> 3957 </cn> </apply> </apply> <cn type='integer'> 32871 </cn> </apply> </apply> <cn type='integer'> 467775 </cn> </apply> </apply> <cn type='integer'> 530145 </cn> </apply> </apply> <cn type='integer'> -99225 </cn> </apply> </apply> <cn type='integer'> 144585 </cn> </apply> </apply> <cn type='integer'> -1647135 </cn> </apply> </apply> <cn type='integer'> 1927800 </cn> </apply> </apply> <cn type='integer'> -1360800 </cn> </apply> <apply> <ci> BesselK </ci> <cn type='integer'> 0 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", RowBox[List["-", "6"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["256", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["z", "/", "2"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "z"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1360800"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1927800", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1647135"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["144585", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "99225"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["530145", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["467775", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["32871", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["3957", "+", RowBox[List["210", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["5443200", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7711200"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["6758640", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4867695"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["422415", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "337365"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["218295", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["357639", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["29217", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["3753", "+", RowBox[List["206", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]]]], ")"]]]], RowBox[List["298841265347625", " ", SqrtBox["\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02