Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=11/2





http://functions.wolfram.com/07.33.03.0785.01









  


  










Input Form





HypergeometricU[11/2, -(11/2), -z] == (1/(2414168064000 z)) ((z (-2 E^z Sqrt[-z] (-9823275 + 4 z (-3274425 + z (-2837835 + 8 z (-270270 + z (-218295 + 4 z (-59535 + z (134445 + 2 z (-24396 + z (3369 + 4 (-49 + z) z))))))))) + Sqrt[Pi] (9823275 + 2 z (9823275 + 2 z (5457375 + 2 z (2338875 - 4 z (-467775 + 2 z (-218295 + 2 z (-218295 + 2 z (155925 + z (-51975 + 2 z (3465 + 2 z (-99 + 2 z)))))))))))) - Sqrt[Pi] Sqrt[-z^2] (9823275 + 2 z (9823275 + 2 z (5457375 + 2 z (2338875 - 4 z (-467775 + 2 z (-218295 + 2 z (-218295 + 2 z (155925 + z (-51975 + 2 z (3465 + 2 z (-99 + 2 z))))))))))) Erfi[Sqrt[z]])/E^z)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2414168064000", " ", "z"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9823275"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3274425"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2837835"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "270270"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "59535"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["134445", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "24396"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["3369", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "49"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["9823275", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["9823275", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["5457375", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["2338875", "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "467775"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["155925", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "51975"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["3465", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "99"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["9823275", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["9823275", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["5457375", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["2338875", "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "467775"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["155925", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "51975"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["3465", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "99"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2414168064000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2338875 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 99 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3465 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 51975 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 155925 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 218295 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 218295 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 467775 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5457375 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 9823275 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 9823275 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 49 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3369 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 24396 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 134445 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 59535 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 218295 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 270270 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2837835 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3274425 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 9823275 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2338875 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 99 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3465 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 51975 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 155925 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 218295 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 218295 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 467775 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5457375 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 9823275 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 9823275 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 11 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2414168064000 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2338875 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -99 </cn> </apply> </apply> <cn type='integer'> 3465 </cn> </apply> </apply> <cn type='integer'> -51975 </cn> </apply> </apply> <cn type='integer'> 155925 </cn> </apply> </apply> <cn type='integer'> -218295 </cn> </apply> </apply> <cn type='integer'> -218295 </cn> </apply> </apply> <cn type='integer'> -467775 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 5457375 </cn> </apply> </apply> <cn type='integer'> 9823275 </cn> </apply> </apply> <cn type='integer'> 9823275 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -49 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 3369 </cn> </apply> </apply> <cn type='integer'> -24396 </cn> </apply> </apply> <cn type='integer'> 134445 </cn> </apply> </apply> <cn type='integer'> -59535 </cn> </apply> </apply> <cn type='integer'> -218295 </cn> </apply> </apply> <cn type='integer'> -270270 </cn> </apply> </apply> <cn type='integer'> -2837835 </cn> </apply> </apply> <cn type='integer'> -3274425 </cn> </apply> </apply> <cn type='integer'> -9823275 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2338875 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -99 </cn> </apply> </apply> <cn type='integer'> 3465 </cn> </apply> </apply> <cn type='integer'> -51975 </cn> </apply> </apply> <cn type='integer'> 155925 </cn> </apply> </apply> <cn type='integer'> -218295 </cn> </apply> </apply> <cn type='integer'> -218295 </cn> </apply> </apply> <cn type='integer'> -467775 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 5457375 </cn> </apply> </apply> <cn type='integer'> 9823275 </cn> </apply> </apply> <cn type='integer'> 9823275 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox[RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9823275"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3274425"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2837835"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "270270"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "59535"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["134445", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "24396"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["3369", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "49"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["9823275", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["9823275", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["5457375", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["2338875", "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "467775"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["155925", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "51975"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["3465", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "99"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["9823275", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["9823275", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["5457375", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["2338875", "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "467775"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "218295"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["155925", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "51975"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["3465", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "99"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["2414168064000", " ", "z"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02