Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=11/2





http://functions.wolfram.com/07.33.03.0799.01









  


  










Input Form





HypergeometricU[11/2, -2, -z] == -((1/(1915538625 Sqrt[Pi])) ((64 z (z (-945 + 2 z (-85995 + 4 z (33075 + 2 z (-8130 + z (1635 + 2 z (-69 + 2 z)))))) BesselK[0, z/2] + (-3780 + z (-12285 + 2 z (-19845 + 4 z (20955 + 2 z (-6690 + z (1503 + 2 z (-67 + 2 z))))))) BesselK[1, z/2] - (z (-945 + 2 z (-85995 + 4 z (33075 + 2 z (-8130 + z (1635 + 2 z (-69 + 2 z)))))) BesselI[0, z/2] + (3780 + z (12285 + 2 z (19845 - 4 z (20955 + 2 z (-6690 + z (1503 + 2 z (-67 + 2 z))))))) BesselI[1, z/2]) (Log[-z] - Log[z])))/E^(z/2)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", RowBox[List["-", "2"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["1915538625", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List["64", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "z"]], "/", "2"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "945"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "85995"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8130"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1635", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "69"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3780"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "12285"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19845"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["20955", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6690"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1503", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "67"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "945"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "85995"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8130"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1635", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "69"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3780", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["12285", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["19845", "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["20955", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6690"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1503", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "67"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], "-", RowBox[List["Log", "[", "z", "]"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1915538625 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 69 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1635 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 8130 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 33075 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 85995 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 945 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 67 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1503 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6690 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 20955 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 19845 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 12285 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3780 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 69 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1635 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 8130 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 33075 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 85995 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 945 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 19845 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 67 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1503 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6690 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 20955 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 12285 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3780 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='integer'> -2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1915538625 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -69 </cn> </apply> </apply> <cn type='integer'> 1635 </cn> </apply> </apply> <cn type='integer'> -8130 </cn> </apply> </apply> <cn type='integer'> 33075 </cn> </apply> </apply> <cn type='integer'> -85995 </cn> </apply> </apply> <cn type='integer'> -945 </cn> </apply> <apply> <ci> BesselK </ci> <cn type='integer'> 0 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -67 </cn> </apply> </apply> <cn type='integer'> 1503 </cn> </apply> </apply> <cn type='integer'> -6690 </cn> </apply> </apply> <cn type='integer'> 20955 </cn> </apply> </apply> <cn type='integer'> -19845 </cn> </apply> </apply> <cn type='integer'> -12285 </cn> </apply> </apply> <cn type='integer'> -3780 </cn> </apply> <apply> <ci> BesselK </ci> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -69 </cn> </apply> </apply> <cn type='integer'> 1635 </cn> </apply> </apply> <cn type='integer'> -8130 </cn> </apply> </apply> <cn type='integer'> 33075 </cn> </apply> </apply> <cn type='integer'> -85995 </cn> </apply> </apply> <cn type='integer'> -945 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 0 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <cn type='integer'> 19845 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -67 </cn> </apply> </apply> <cn type='integer'> 1503 </cn> </apply> </apply> <cn type='integer'> -6690 </cn> </apply> </apply> <cn type='integer'> 20955 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 12285 </cn> </apply> </apply> <cn type='integer'> 3780 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", RowBox[List["-", "2"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["64", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", "2"]]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "945"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "85995"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8130"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1635", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "69"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3780"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "12285"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19845"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["20955", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6690"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1503", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "67"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "945"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "85995"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8130"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1635", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "69"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", FractionBox["z", "2"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["3780", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["12285", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["19845", "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["20955", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6690"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1503", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "67"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", FractionBox["z", "2"]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], "-", RowBox[List["Log", "[", "z", "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["1915538625", " ", SqrtBox["\[Pi]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02