Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Specific values > For fixed z > For fixed z and a=11/2





http://functions.wolfram.com/07.33.03.0801.01









  


  










Input Form





HypergeometricU[11/2, -(3/2), -z] == (1/893025) (8 (-z)^(5/2) (-(128457/64) + (74349 z)/16 - (69939 z^2)/16 + (3795 z^3)/2 - (1515 z^4)/4 + 33 z^5 - z^6 + (1/(512 z^3)) (((-2835 + 2 z (-6615 + 2 z (-19845 + 2 z (33075 + 2 z (-11025 + 2 z (1323 + 2 z (-63 + 2 z))))))) (3 Sqrt[Pi] Sqrt[-z] + 2 E^z z (-3 + 2 z) + 3 Sqrt[Pi] Sqrt[z] Erfi[Sqrt[z]]))/E^z)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", RowBox[List["-", FractionBox["3", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "893025"], RowBox[List["(", RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["128457", "64"]]], "+", FractionBox[RowBox[List["74349", " ", "z"]], "16"], "-", FractionBox[RowBox[List["69939", " ", SuperscriptBox["z", "2"]]], "16"], "+", FractionBox[RowBox[List["3795", " ", SuperscriptBox["z", "3"]]], "2"], "-", FractionBox[RowBox[List["1515", " ", SuperscriptBox["z", "4"]]], "4"], "+", RowBox[List["33", " ", SuperscriptBox["z", "5"]]], "-", SuperscriptBox["z", "6"], "+", RowBox[List[FractionBox["1", RowBox[List["512", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2835"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6615"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19845"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11025"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["1323", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "63"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]], "+", RowBox[List["3", " ", SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 893025 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 33 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 1515 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3795 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 69939 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 16 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 74349 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 16 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 128457 </mn> <mn> 64 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 63 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1323 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 11025 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 33075 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 19845 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6615 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2835 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 11 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 893025 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1515 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3795 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 69939 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 74349 </cn> <ci> z </ci> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 128457 <sep /> 64 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -63 </cn> </apply> </apply> <cn type='integer'> 1323 </cn> </apply> </apply> <cn type='integer'> -11025 </cn> </apply> </apply> <cn type='integer'> 33075 </cn> </apply> </apply> <cn type='integer'> -19845 </cn> </apply> </apply> <cn type='integer'> -6615 </cn> </apply> </apply> <cn type='integer'> -2835 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", RowBox[List["-", FractionBox["3", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["128457", "64"]]], "+", FractionBox[RowBox[List["74349", " ", "z"]], "16"], "-", FractionBox[RowBox[List["69939", " ", SuperscriptBox["z", "2"]]], "16"], "+", FractionBox[RowBox[List["3795", " ", SuperscriptBox["z", "3"]]], "2"], "-", FractionBox[RowBox[List["1515", " ", SuperscriptBox["z", "4"]]], "4"], "+", RowBox[List["33", " ", SuperscriptBox["z", "5"]]], "-", SuperscriptBox["z", "6"], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2835"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6615"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19845"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["33075", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11025"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["1323", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "63"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]], "+", RowBox[List["3", " ", SqrtBox["\[Pi]"], " ", SqrtBox["z"], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["512", " ", SuperscriptBox["z", "3"]]]]]], ")"]]]], "893025"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02