|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.33.03.0816.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricU[11/2, 5/2, z] ==
(1/2835) (2 (-((2 (-12 + z (96 + z (165 + 4 z (13 + z)))))/z^(3/2)) +
E^z Sqrt[Pi] (315 + 2 z (189 + 54 z + 4 z^2)) Erfc[Sqrt[z]]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", FractionBox["5", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "2835"], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "12"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["96", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["165", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["13", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["189", "+", RowBox[List["54", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfc", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox["U", HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 54 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 189 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 165 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 96 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 12 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2835 </mn> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricU </ci> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 5 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 54 </cn> <ci> z </ci> </apply> <cn type='integer'> 189 </cn> </apply> </apply> <cn type='integer'> 315 </cn> </apply> <apply> <ci> Erfc </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <cn type='integer'> 165 </cn> </apply> </apply> <cn type='integer'> 96 </cn> </apply> </apply> <cn type='integer'> -12 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2835 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricU", "[", RowBox[List[FractionBox["11", "2"], ",", FractionBox["5", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "12"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["96", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["165", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["13", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["189", "+", RowBox[List["54", " ", "z"]], "+", RowBox[List["4", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfc", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], "2835"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|