Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Integral representations > Contour integral representations





http://functions.wolfram.com/07.33.07.0004.01









  


  










Input Form





HypergeometricU[a, b, z]/E^z == (1/(2 Pi I)) Integrate[(Gamma[s] Gamma[1 - b + s])/Gamma[a - b + 1 + s]/z^s, {s, \[Gamma] - I Infinity, \[Gamma] + I Infinity}] /; Max[0, Re[b] - 1] < \[Gamma] && Abs[Arg[z]] < Pi/2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], RowBox[List["HypergeometricU", "[", RowBox[List["a", ",", "b", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "b", "+", "s"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["a", "-", "b", "+", "1", "+", "s"]], "]"]]], SuperscriptBox["z", RowBox[List["-", "s"]]], " ", RowBox[List["\[DifferentialD]", "s"]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Max", "[", RowBox[List["0", ",", RowBox[List[RowBox[List["Re", "[", "b", "]"]], "-", "1"]]]], "]"]], "<", "\[Gamma]"]], "\[And]", " ", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "z", "]"]], "]"]], "<", FractionBox["\[Pi]", "2"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mi> &#947; </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> </mrow> <mrow> <mi> &#947; </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> <mo> + </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> s </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> max </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mi> &#947; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> HypergeometricU </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> s </ci> </bvar> <lowlimit> <apply> <plus /> <ci> &#947; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <plus /> <ci> &#947; </ci> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <max /> <cn type='integer'> 0 </cn> <apply> <plus /> <apply> <real /> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#947; </ci> </apply> <apply> <lt /> <apply> <abs /> <apply> <arg /> <ci> z </ci> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z_"]]], " ", RowBox[List["HypergeometricU", "[", RowBox[List["a_", ",", "b_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b", "+", "s"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["-", "s"]]]]], RowBox[List["Gamma", "[", RowBox[List["a", "-", "b", "+", "1", "+", "s"]], "]"]]], RowBox[List["\[DifferentialD]", "s"]]]]]], RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], "/;", RowBox[List[RowBox[List[RowBox[List["Max", "[", RowBox[List["0", ",", RowBox[List[RowBox[List["Re", "[", "b", "]"]], "-", "1"]]]], "]"]], "<", "\[Gamma]"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "z", "]"]], "]"]], "<", FractionBox["\[Pi]", "2"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29