|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.33.16.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricU[a, b, -z] HypergeometricU[a, b, z] ==
((Pi (b - 2 a) z^(2 - b/2))/((-z)^(b/2) (b (b - 2) Gamma[a]
Gamma[1 + a - b]))) Csc[(b Pi)/2] HypergeometricPFQ[
{1 + a - b/2, 1 - a + b/2}, {3/2, 2 - b/2, 1 + b/2}, z^2/4] -
((Pi z^((3 - b)/2))/((-z)^((b + 1)/2) ((b - 1) Gamma[a] Gamma[1 + a - b])))
Sec[(b Pi)/2] HypergeometricPFQ[{(1 - b)/2 + a, (1 + b)/2 - a},
{1/2, (3 - b)/2, (1 + b)/2}, z^2/4] -
((z^(2 - b) Gamma[b - 1]^2)/((-z)^b Gamma[a]^2))
HypergeometricPFQ[{1 - a, 1 + a - b}, {2 - b, 1 - b/2, (3 - b)/2},
z^2/4] + (Gamma[1 - b]^2/Gamma[1 + a - b]^2)
HypergeometricPFQ[{a, -a + b}, {(1 + b)/2, b/2, b}, z^2/4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List["a", ",", "b", ",", RowBox[List["-", "z"]]]], "]"]], " ", RowBox[List["HypergeometricU", "[", RowBox[List["a", ",", "b", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "a"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", "b"]], "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["2", "-", FractionBox["b", "2"]]]]]], RowBox[List["b", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "b"]], "]"]]]]], " ", RowBox[List["Csc", "[", FractionBox[RowBox[List["b", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a", "-", FractionBox["b", "2"]]], ",", RowBox[List["1", "-", "a", "+", FractionBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["2", "-", FractionBox["b", "2"]]], ",", RowBox[List["1", "+", FractionBox["b", "2"]]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", FractionBox[RowBox[List["b", "+", "1"]], "2"]]]], " ", SuperscriptBox["z", FractionBox[RowBox[List["3", "-", "b"]], "2"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "b"]], "]"]]]]], " ", RowBox[List["Sec", "[", FractionBox[RowBox[List["b", " ", "\[Pi]"]], "2"], "]"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["1", "-", "b"]], "2"], "+", "a"]], ",", RowBox[List[FractionBox[RowBox[List["1", "+", "b"]], "2"], "-", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["3", "-", "b"]], "2"], ",", FractionBox[RowBox[List["1", "+", "b"]], "2"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]], " ", "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]], " ", SuperscriptBox["z", RowBox[List["2", "-", "b"]]], SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["b", "-", "1"]], "]"]], "2"]]], RowBox[List[SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " "]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", RowBox[List["1", "+", "a", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", "b"]], ",", RowBox[List["1", "-", FractionBox["b", "2"]]], ",", FractionBox[RowBox[List["3", "-", "b"]], "2"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]], " ", "+", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]], "2"], SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "b"]], "]"]], "2"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List[RowBox[List["-", "a"]], "+", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "b"]], "2"], ",", FractionBox["b", "2"], ",", "b"]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox["U", HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox["U", HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "-", FractionBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "a", "+", FractionBox["b", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", FractionBox["b", "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["z", "2"], "4"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> b </mi> </mrow> </msup> </mrow> </mrow> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", "a"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "-", "b", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["2", "-", "b"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["b", "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["3", "-", "b"]], "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["z", "2"], "4"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["b", "-", "a"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["b", "+", "1"]], "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["b", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["z", "2"], "4"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> sec </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", FractionBox[RowBox[List["1", "-", "b"]], "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox[RowBox[List["b", "+", "1"]], "2"], "-", "a"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["3", "-", "b"]], "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["b", "+", "1"]], "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["z", "2"], "4"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <ci> HypergeometricU </ci> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> HypergeometricU </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> -2 </cn> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <csc /> <apply> <times /> <ci> b </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </list> <list> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> b </ci> </list> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sec /> <apply> <times /> <ci> b </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["HypergeometricU", "[", RowBox[List["a_", ",", "b_", ",", RowBox[List["-", "z_"]]]], "]"]], " ", RowBox[List["HypergeometricU", "[", RowBox[List["a_", ",", "b_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["2", " ", "a"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", FractionBox["b", "2"]]]], " ", SuperscriptBox["z", RowBox[List["2", "-", FractionBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Csc", "[", FractionBox[RowBox[List["b", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a", "-", FractionBox["b", "2"]]], ",", RowBox[List["1", "-", "a", "+", FractionBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["2", "-", FractionBox["b", "2"]]], ",", RowBox[List["1", "+", FractionBox["b", "2"]]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "b"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["b", "+", "1"]], ")"]]]]], " ", SuperscriptBox["z", FractionBox[RowBox[List["3", "-", "b"]], "2"]]]], ")"]], " ", RowBox[List["Sec", "[", FractionBox[RowBox[List["b", " ", "\[Pi]"]], "2"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["1", "-", "b"]], "2"], "+", "a"]], ",", RowBox[List[FractionBox[RowBox[List["1", "+", "b"]], "2"], "-", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["3", "-", "b"]], "2"], ",", FractionBox[RowBox[List["1", "+", "b"]], "2"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "b"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]], " ", SuperscriptBox["z", RowBox[List["2", "-", "b"]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["b", "-", "1"]], "]"]], "2"]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", RowBox[List["1", "+", "a", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", "b"]], ",", RowBox[List["1", "-", FractionBox["b", "2"]]], ",", FractionBox[RowBox[List["3", "-", "b"]], "2"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]], SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List[RowBox[List["-", "a"]], "+", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "+", "b"]], "2"], ",", FractionBox["b", "2"], ",", "b"]], "}"]], ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]], SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "b"]], "]"]], "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|