Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











HypergeometricU






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricU[a,b,z] > Differentiation > Fractional integro-differentiation > With respect to z





http://functions.wolfram.com/07.33.20.0015.01









  


  










Input Form





D[HypergeometricU[a, 0, z], {z, \[Alpha]}] == (1/(z^\[Alpha] Gamma[a + 1])) (1/Gamma[1 - \[Alpha]] + a Sum[((Pochhammer[a + 1, k] z^(1 + k))/(Pochhammer[2, k] k!)) FDLogConstant[z, k + 1, \[Alpha]], {k, 1, Infinity}] - Sum[((Pochhammer[a, k] z^k)/(Gamma[k - \[Alpha] + 1] (k - 1)!)) (1/k - PolyGamma[a + k] + 2 PolyGamma[k]), {k, 1, Infinity}])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["HypergeometricU", "[", RowBox[List["a", ",", "0", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]]], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], "+", RowBox[List["a", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a", "+", "1"]], ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List["1", "+", "k"]]], " "]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["2", ",", "k"]], "]"]], RowBox[List["k", "!"]]]]], RowBox[List["FDLogConstant", "[", RowBox[List["z", ",", RowBox[List["k", "+", "1"]], ",", "\[Alpha]"]], "]"]]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["a", ",", "k"]], "]"]], " ", SuperscriptBox["z", "k"], " "]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Alpha]", "+", "1"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[FractionBox["1", "k"], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "k"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "k", "]"]]]]]], ")"]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox[&quot;U&quot;, HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;2&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> log </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;a&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> k </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> HypergeometricU </ci> <ci> a </ci> <cn type='integer'> 0 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> log </ci> </apply> <ci> &#945; </ci> </apply> <ci> z </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["HypergeometricU", "[", RowBox[List["a_", ",", "0", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], "+", RowBox[List["a", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a", "+", "1"]], ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List["1", "+", "k"]]]]], ")"]], " ", RowBox[List["FDLogConstant", "[", RowBox[List["z", ",", RowBox[List["k", "+", "1"]], ",", "\[Alpha]"]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["2", ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["a", ",", "k"]], "]"]], " ", SuperscriptBox["z", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox["1", "k"], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "k"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", "k", "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["k", "-", "\[Alpha]", "+", "1"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "!"]]]]]]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29