Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > JacobiP[nu,a,b,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/07.15.06.0004.01









  


  










Input Form





JacobiP[\[Nu], a, b, z] == (Gamma[a + \[Nu] + 1]/Gamma[\[Nu] + 1]) Sum[(Pochhammer[-\[Nu], k] Pochhammer[a + b + \[Nu] + 1, k] (-z)^j)/ (Gamma[a + k + 1] j! (k - j)! 2^k), {k, 0, Infinity}, {j, 0, k}] /; Abs[z] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["a", "+", "\[Nu]", "+", "1"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a", "+", "b", "+", "\[Nu]", "+", "1"]], ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "j"]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "+", "k", "+", "1"]], "]"]], " ", RowBox[List["j", "!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], SuperscriptBox["2", "k"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;b&quot;, &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mi> k </mi> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> JacobiP </ci> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "+", "\[Nu]", "+", "1"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a", "+", "b", "+", "\[Nu]", "+", "1"]], ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "j"]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "+", "k", "+", "1"]], "]"]], " ", RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j"]], ")"]], "!"]], " ", SuperscriptBox["2", "k"]]]]]]]]]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29