  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.15.06.0038.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    JacobiP[\[Nu], a, b, z] \[Proportional] 
  (((-1)^(a + b + 2 \[Nu]) 2^(1 + a) Sin[Pi \[Nu]] Gamma[1 + a])/
     (Pi (1 + a + \[Nu]) Gamma[1 - b - \[Nu]] Gamma[1 + a + b + \[Nu]])) 
    z^(-1 - a) (1 + O[1/z]) - 
   ((2^(1 + a + b + \[Nu]) Sin[Pi \[Nu]] Gamma[-1 - a - b - 2 \[Nu]] 
      Gamma[1 + a + \[Nu]])/(Pi Gamma[-b - \[Nu]])) z^(-1 - a - b - \[Nu]) 
    (1 + O[1/z]) + (((-1)^(a + b + 2 \[Nu] - 1) z^\[Nu])/
     (2^\[Nu] ((-1 - a - b - 2 \[Nu])! Gamma[1 + \[Nu]] 
       Gamma[1 + a + b + \[Nu]]))) (Log[(z - 1)/2] - EulerGamma + 
     PolyGamma[-a - b - 2 \[Nu]] - PolyGamma[-\[Nu]] - 
     PolyGamma[1 + a + \[Nu]]) (1 + O[1/z]) /; 
 (Abs[z] -> Infinity) && Element[-1 - a - b - 2 \[Nu], Integers] && 
  -1 - a - b - 2 \[Nu] > 0 && Element[-b - \[Nu], Integers] && 
  -b - \[Nu] > 0 && a + \[Nu] >= 0 &&  !IntervalMemberQ[Interval[{-1, 1}], z] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]]], " ", SuperscriptBox["2", RowBox[List["1", "+", "a"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]], "]"]]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "\[Nu]"]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "]"]]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]], "-", "1"]]], " ", SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " "]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "!"]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["z", "-", "1"]], "2"], "]"]], "-", "EulerGamma", "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "a"]], "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "+", "\[Nu]"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], ">", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "\[Nu]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "1"]], ",", "1"]], "}"]], "]"]], ",", "z"]], "]"]], "]"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <mi> P </mi>  <mi> ν </mi>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ∝ </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mi> ν </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> b </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> z </mi>  <mi> ν </mi>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ≥ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> z </mi>  <mo> ∉ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> JacobiP </ci>  <ci> ν </ci>  <ci> a </ci>  <ci> b </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <pi />  <ci> ν </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <pi />  <apply>  <plus />  <ci> a </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <ci> O </ci>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <pi />  <ci> ν </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> a </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <pi />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <ci> O </ci>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> a </ci>  <ci> b </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <apply>  <power />  <ci> z </ci>  <ci> ν </ci>  </apply>  <apply>  <plus />  <apply>  <ln />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> a </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <eulergamma />  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <ci> O </ci>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <ci> Rule </ci>  <apply>  <abs />  <ci> z </ci>  </apply>  <infinity />  </apply>  <apply>  <in />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <in />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <geq />  <apply>  <plus />  <ci> a </ci>  <ci> ν </ci>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <notin />  <ci> z </ci>  <list>  <cn type='integer'> -1 </cn>  <cn type='integer'> 1 </cn>  </list>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]]], " ", SuperscriptBox["2", RowBox[List["1", "+", "a"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]], "-", "1"]]], " ", SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["z", "-", "1"]], "2"], "]"]], "-", "EulerGamma", "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "a"]], "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], ">", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "\[Nu]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "1"]], ",", "1"]], "}"]], "]"]], ",", "z"]], "]"]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |