|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.15.06.0038.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JacobiP[\[Nu], a, b, z] \[Proportional]
(((-1)^(a + b + 2 \[Nu]) 2^(1 + a) Sin[Pi \[Nu]] Gamma[1 + a])/
(Pi (1 + a + \[Nu]) Gamma[1 - b - \[Nu]] Gamma[1 + a + b + \[Nu]]))
z^(-1 - a) (1 + O[1/z]) -
((2^(1 + a + b + \[Nu]) Sin[Pi \[Nu]] Gamma[-1 - a - b - 2 \[Nu]]
Gamma[1 + a + \[Nu]])/(Pi Gamma[-b - \[Nu]])) z^(-1 - a - b - \[Nu])
(1 + O[1/z]) + (((-1)^(a + b + 2 \[Nu] - 1) z^\[Nu])/
(2^\[Nu] ((-1 - a - b - 2 \[Nu])! Gamma[1 + \[Nu]]
Gamma[1 + a + b + \[Nu]]))) (Log[(z - 1)/2] - EulerGamma +
PolyGamma[-a - b - 2 \[Nu]] - PolyGamma[-\[Nu]] -
PolyGamma[1 + a + \[Nu]]) (1 + O[1/z]) /;
(Abs[z] -> Infinity) && Element[-1 - a - b - 2 \[Nu], Integers] &&
-1 - a - b - 2 \[Nu] > 0 && Element[-b - \[Nu], Integers] &&
-b - \[Nu] > 0 && a + \[Nu] >= 0 && !IntervalMemberQ[Interval[{-1, 1}], z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]]], " ", SuperscriptBox["2", RowBox[List["1", "+", "a"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]], "]"]]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "\[Nu]"]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "]"]]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]], "-", "1"]]], " ", SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " "]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "!"]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["z", "-", "1"]], "2"], "]"]], "-", "EulerGamma", "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "a"]], "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "+", "\[Nu]"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], ">", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "\[Nu]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "1"]], ",", "1"]], "}"]], "]"]], ",", "z"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> ν </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> z </mi> <mi> ν </mi> </msup> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ≥ </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> z </mi> <mo> ∉ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> JacobiP </ci> <ci> ν </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <plus /> <ci> a </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <eulergamma /> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <geq /> <apply> <plus /> <ci> a </ci> <ci> ν </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <notin /> <ci> z </ci> <list> <cn type='integer'> -1 </cn> <cn type='integer'> 1 </cn> </list> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]]], " ", SuperscriptBox["2", RowBox[List["1", "+", "a"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]], "-", "1"]]], " ", SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["z", "-", "1"]], "2"], "]"]], "-", "EulerGamma", "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "a"]], "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "+", "b", "+", "\[Nu]"]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "-", RowBox[List["2", " ", "\[Nu]"]]]], ">", "0"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["a", "+", "\[Nu]"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "1"]], ",", "1"]], "}"]], "]"]], ",", "z"]], "]"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|