Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > JacobiP[nu,a,b,z] > Identities > Recurrence identities > Distant neighbors





http://functions.wolfram.com/07.15.17.0019.01









  


  










Input Form





JacobiP[\[Nu], a, b, z] == Subscript[\[ScriptCapitalC], n][\[Nu], a, b, z] JacobiP[\[Nu] - n, a, b, z] + (((a - n + \[Nu]) (b - n + \[Nu]) (2 + a + b - 2 n + 2 \[Nu]))/ ((-1 + n - \[Nu]) (1 + a + b - n + \[Nu]) (a + b - 2 n + 2 \[Nu]))) Subscript[\[ScriptCapitalC], n - 1][\[Nu], a, b, z] JacobiP[\[Nu] - n - 1, a, b, z] /; Subscript[\[ScriptCapitalC], 0][\[Nu], a, b, z] == 1 && Subscript[\[ScriptCapitalC], 1][\[Nu], a, b, z] == ((-1 + a + b + 2 \[Nu]) (a^2 - b^2 + z (-2 + a + b + 2 \[Nu]) (a + b + 2 \[Nu])))/(2 \[Nu] (a + b + \[Nu]) (-2 + a + b + 2 \[Nu])) && Subscript[\[ScriptCapitalC], n][\[Nu], a, b, z] == (((1 + a + b - 2 n + 2 \[Nu]) (a^2 - b^2 + z (a + b - 2 n + 2 \[Nu]) (2 + a + b - 2 n + 2 \[Nu])))/ (2 (1 - n + \[Nu]) (1 + a + b - n + \[Nu]) (a + b - 2 n + 2 \[Nu]))) Subscript[\[ScriptCapitalC], n - 1][\[Nu], a, b, z] + (((1 + a - n + \[Nu]) (1 + b - n + \[Nu]) (4 + a + b - 2 n + 2 \[Nu]))/ ((-2 + n - \[Nu]) (2 + a + b - n + \[Nu]) (2 + a + b - 2 n + 2 \[Nu]))) Subscript[\[ScriptCapitalC], n - 2][\[Nu], a, b, z] && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["\[Nu]", "-", "n"]], ",", "a", ",", "b", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["\[Nu]", "-", "n", "-", "1"]], ",", "a", ",", "b", ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "0"], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "1"], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], " ", "\[And]", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "n", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "2"]]], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]]]]]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> &#957; </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mtext> </mtext> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> n </mi> </mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> JacobiP </ci> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <ci> JacobiP </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <ci> n </ci> </apply> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <ci> JacobiP </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <cn type='integer'> 0 </cn> </apply> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <ci> n </ci> </apply> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </apply> <ci> &#957; </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["\[Nu]_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["\[Nu]", "-", "n"]], ",", "a", ",", "b", ",", "z"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["\[Nu]", "-", "n", "-", "1"]], ",", "a", ",", "b", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "0"], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "1"], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "a", "+", "b", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]], "&&", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "+", "b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "2"]]], "[", RowBox[List["\[Nu]", ",", "a", ",", "b", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "n", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "-", "n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a", "+", "b", "-", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02