Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LaguerreL






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LaguerreL[nu,lambda,z] > Series representations > Asymptotic series expansions





http://functions.wolfram.com/07.03.06.0027.01









  


  










Input Form





LaguerreL[\[Nu], \[Lambda], z] \[Proportional] ((-z)^\[Nu]/Gamma[\[Nu] + 1]) (1 - ((\[Lambda] + \[Nu]) \[Nu])/z + ((1 - \[Nu]) (\[Lambda] + \[Nu]) (1 - \[Lambda] - \[Nu]) \[Nu])/ (2 z^2) + \[Ellipsis]) - (Sin[\[Nu] Pi]/Pi) Gamma[\[Nu] + \[Lambda] + 1] z^(-\[Nu] - \[Lambda] - 1) E^z (1 + ((1 + \[Nu]) (1 + \[Lambda] + \[Nu]))/z + ((1 + \[Nu]) (2 + \[Nu]) (1 + \[Lambda] + \[Nu]) (2 + \[Lambda] + \[Nu]))/(2 z^2) + \[Ellipsis]) /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Nu]"], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]], " ", "\[Nu]"]], "z"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", "\[Lambda]", "-", "\[Nu]"]], ")"]], " ", "\[Nu]"]], RowBox[List["2", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], "\[Pi]"], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "\[Lambda]", "+", "1"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "\[Lambda]", "-", "1"]]], SuperscriptBox["\[ExponentialE]", "z"], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]]]], "z"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> L </mi> <mi> &#957; </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mi> z </mi> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#955; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> z </mi> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LaguerreL </ci> <ci> &#957; </ci> <ci> &#955; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <ci> &#957; </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> &#957; </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> &#957; </ci> <pi /> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaguerreL", "[", RowBox[List["\[Nu]_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Nu]"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]], " ", "\[Nu]"]], "z"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", "\[Lambda]", "-", "\[Nu]"]], ")"]], " ", "\[Nu]"]], RowBox[List["2", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]]], "-", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "\[Lambda]", "+", "1"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "\[Lambda]", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]]]], "z"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], "\[Pi]"]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02