| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.03.25.0005.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[(Sqrt[m!/Gamma[\[Lambda] + m + 1]] t^(\[Lambda]/2) Exp[-(t/2)] 
     LaguerreL[m, \[Lambda], t]) (Sqrt[n!/Gamma[\[Lambda] + n + 1]] 
     t^(\[Lambda]/2) Exp[-(t/2)] LaguerreL[n, \[Lambda], t]), 
   {t, 0, Infinity}] == KroneckerDelta[n, m] /; Re[\[Lambda]] > -1 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List["m", "!"]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "m", "+", "1"]], "]"]]]], SuperscriptBox["t", FractionBox["\[Lambda]", "2"]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox["t", "2"]]], "]"]], RowBox[List["LaguerreL", "[", RowBox[List["m", ",", "\[Lambda]", ",", "t"]], "]"]]]], ")"]], RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List["n", "!"]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "n", "+", "1"]], "]"]]]], SuperscriptBox["t", FractionBox["\[Lambda]", "2"]], RowBox[List["Exp", "[", RowBox[List["-", FractionBox["t", "2"]]], "]"]], RowBox[List["LaguerreL", "[", RowBox[List["n", ",", "\[Lambda]", ",", "t"]], "]"]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]]]], "/;", " ", RowBox[List[RowBox[List["Re", "[", "\[Lambda]", "]"]], ">", RowBox[List["-", "1"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mn> 0 </mn>  <mi> ∞ </mi>  </msubsup>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mfrac>  <mrow>  <mi> m </mi>  <mo> ! </mo>  </mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> λ </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> t </mi>  <mrow>  <mi> λ </mi>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mi> t </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mi> m </mi>  <mi> λ </mi>  </msubsup>  <mo> ( </mo>  <mi> t </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mfrac>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mi> λ </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> t </mi>  <mrow>  <mi> λ </mi>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mi> t </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> L </mi>  <mi> n </mi>  <mi> λ </mi>  </msubsup>  <mo> ( </mo>  <mi> t </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <msub>  <semantics>  <mi> δ </mi>  <annotation-xml encoding='MathML-Content'>  <ci> KroneckerDelta </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> n </mi>  <mo> , </mo>  <mi> m </mi>  </mrow>  </msub>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> λ </mi>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> m </ci>  <ci> λ </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> t </ci>  <apply>  <times />  <ci> λ </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> t </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> LaguerreL </ci>  <ci> m </ci>  <ci> λ </ci>  <ci> t </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <ci> λ </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> t </ci>  <apply>  <times />  <ci> λ </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> t </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> LaguerreL </ci>  <ci> n </ci>  <ci> λ </ci>  <ci> t </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> KroneckerDelta </ci>  <ci> n </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <gt />  <apply>  <real />  <ci> λ </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List["m_", "!"]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]_", "+", "m_", "+", "1"]], "]"]]]], " ", SuperscriptBox["t_", FractionBox["\[Lambda]_", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["t_", "2"]]]], " ", RowBox[List["LaguerreL", "[", RowBox[List["m_", ",", "\[Lambda]_", ",", "t_"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List["n_", "!"]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]_", "+", "n_", "+", "1"]], "]"]]]], " ", SuperscriptBox["t_", FractionBox["\[Lambda]_", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["t_", "2"]]]], " ", RowBox[List["LaguerreL", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", "t_"]], "]"]]]], ")"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]], "/;", RowBox[List[RowBox[List["Re", "[", "\[Lambda]", "]"]], ">", RowBox[List["-", "1"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |