| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.02.09.0001.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | LaguerreL[\[Nu], z] == Limit[JacobiP[\[Nu], 0, b, 1 - (2 z)/b], b -> Infinity] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["LaguerreL", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List["Limit", "[", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "0", ",", "b", ",", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "z"]], "b"]]]]], "]"]], ",", RowBox[List["b", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msub>  <mi> L </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <munder>  <mi> lim </mi>  <mrow>  <mi> b </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  </munder>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mrow>  <msubsup>  <mi> P </mi>  <mi> ν </mi>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mi> b </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> LaguerreL </ci>  <ci> ν </ci>  <ci> z </ci>  </apply>  <apply>  <limit />  <bvar>  <ci> b </ci>  </bvar>  <condition>  <apply>  <tendsto />  <ci> b </ci>  <infinity />  </apply>  </condition>  <apply>  <ci> JacobiP </ci>  <ci> ν </ci>  <cn type='integer'> 0 </cn>  <ci> b </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaguerreL", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["Limit", "[", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["\[Nu]", ",", "0", ",", "b", ",", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", "z"]], "b"]]]]], "]"]], ",", RowBox[List["b", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |