|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.08.03.0083.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[10, 1, 2, z] == (-(55/128)) z Sqrt[1 - z^2]
(63 - 1092 z^2 + 4914 z^4 - 7956 z^6 + 4199 z^8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["10", ",", "1", ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["55", "128"]]], " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["63", "-", RowBox[List["1092", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4914", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7956", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4199", " ", SuperscriptBox["z", "8"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mn> 10 </mn> <mn> 1 </mn> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 55 </mn> <mn> 128 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4199 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7956 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4914 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1092 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 63 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> LegendreP </ci> <cn type='integer'> 10 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 55 <sep /> 128 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4199 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7956 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4914 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1092 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 63 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["10", ",", "1", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "128"], " ", RowBox[List["(", RowBox[List["-", "55"]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["63", "-", RowBox[List["1092", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4914", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7956", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4199", " ", SuperscriptBox["z", "8"]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|