|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.08.04.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Singularities[LegendreP[\[Nu], \[Mu], 2, z], z] ==
{{ComplexInfinity, -\[Nu] - 1}} /; Element[\[Mu]/2, Integers] &&
Element[-\[Nu], Integers] && -\[Nu] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Singularities", "[", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List["{", RowBox[List["ComplexInfinity", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "1"]]]], "}"]], "}"]]]], "/;", RowBox[List[RowBox[List[FractionBox["\[Mu]", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "\[Nu]"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "\[Nu]"]], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> 𝒮𝒾𝓃ℊ </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mo> { </mo> <mrow> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mfrac> <mi> μ </mi> <mn> 2 </mn> </mfrac> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> 𝒮𝒾𝓃ℊ </ci> <ci> z </ci> </apply> <apply> <ci> LegendreP </ci> <ci> ν </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <list> <list> <apply> <ci> OverTilde </ci> <infinity /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </list> </list> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> ℤ </ci> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Singularities", "[", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List["{", RowBox[List["ComplexInfinity", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "1"]]]], "}"]], "}"]], "/;", RowBox[List[RowBox[List[FractionBox["\[Mu]", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "\[Nu]"]], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|