Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,mu,2,z] > Series representations > Generalized power series > Expansions on branch cuts > For the function itself > Expansion at a point at the right half-plane branch cut





http://functions.wolfram.com/07.08.06.0050.01









  


  










Input Form





LegendreP[\[Nu], \[Mu], 2, z] == ((-((Sin[Pi \[Nu]] Csc[Pi \[Mu]])/(Gamma[-\[Mu] - \[Nu]] Gamma[1 - \[Mu] + \[Nu]]))) Exp[(-Pi) I \[Mu] Floor[Arg[x - z]/(2 Pi)]] (x + 1)^((1/2) \[Mu]) Sum[((((-1)^j 2^(i - k))/((i - j)! j! (k - i)!)) Pochhammer[-(\[Mu]/2), j] Pochhammer[\[Mu]/2, i - j] (1 - x)^(j - i) ((-Gamma[-i + k - \[Nu]]) Gamma[1 - i + k + \[Nu]] Hypergeometric2F1Regularized[-i + k - \[Nu], 1 - i + k + \[Nu], 1 - i + k + \[Mu], (1 + x)/2] + 2^(-i + k + \[Mu]) (1 + x)^(i - k - \[Mu]) Gamma[-\[Mu] - \[Nu]] Gamma[1 - \[Mu] + \[Nu]] Hypergeometric2F1Regularized[ -\[Mu] - \[Nu], 1 - \[Mu] + \[Nu], 1 + i - k - \[Mu], (1 + x)/2]) (z - x)^k)/(x + 1)^j, {k, 0, Infinity}, {i, 0, k}, {j, 0, i}])/ (1 - x)^((1/2) \[Mu]) /; !Element[\[Mu], Integers] && Element[x, Reals] && x > 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]]]], RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", "1"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", "\[Mu]", " "]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "x"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[Mu]", " "]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "i"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["2", RowBox[List["i", "-", "k"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["i", "-", "j"]], ")"]], "!"]], " ", RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "i"]], ")"]], "!"]]]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["\[Mu]", "2"]]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["\[Mu]", "2"], ",", RowBox[List["i", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "x"]], ")"]], RowBox[List["j", "-", "i"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", "1"]], ")"]], RowBox[List["-", "j"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "i"]], "+", "k", "-", "\[Nu]"]], "]"]]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "i", "+", "k", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "i"]], "+", "k", "-", "\[Nu]"]], ",", RowBox[List["1", "-", "i", "+", "k", "+", "\[Nu]"]], ",", RowBox[List["1", "-", "i", "+", "k", "+", "\[Mu]"]], ",", FractionBox[RowBox[List["1", "+", "x"]], "2"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "i"]], "+", "k", "+", "\[Mu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], RowBox[List["i", "-", "k", "-", "\[Mu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], ",", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "i", "-", "k", "-", "\[Mu]"]], ",", FractionBox[RowBox[List["1", "+", "x"]], "2"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "k"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["x", ">", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#960; </mi> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#956; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> i </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> i </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> i </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Mu]&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;\[Mu]&quot;, &quot;2&quot;], &quot;)&quot;]], RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;j&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> i </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;\[Mu]&quot;]], &quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;\[Mu]&quot;]], &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;k&quot;, &quot;-&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> i </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;i&quot;]], &quot;+&quot;, &quot;k&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;i&quot;]], &quot;+&quot;, &quot;k&quot;, &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;i&quot;]], &quot;+&quot;, &quot;k&quot;, &quot;+&quot;, &quot;\[Mu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;x&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> &#956; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &gt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <sin /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <imaginaryi /> <ci> &#956; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> i </ci> </uplimit> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <ci> k </ci> <ci> &#956; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <ci> k </ci> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <ci> k </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <ci> k </ci> <ci> &#956; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <notin /> <ci> &#956; </ci> <integers /> </apply> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <gt /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", "\[Mu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", "1"]], ")"]], FractionBox["\[Mu]", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "x"]], ")"]], RowBox[List["-", FractionBox["\[Mu]", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "i"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["2", RowBox[List["i", "-", "k"]]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["\[Mu]", "2"]]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["\[Mu]", "2"], ",", RowBox[List["i", "-", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "x"]], ")"]], RowBox[List["j", "-", "i"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["x", "+", "1"]], ")"]], RowBox[List["-", "j"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "i"]], "+", "k", "-", "\[Nu]"]], "]"]]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "i", "+", "k", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "i"]], "+", "k", "-", "\[Nu]"]], ",", RowBox[List["1", "-", "i", "+", "k", "+", "\[Nu]"]], ",", RowBox[List["1", "-", "i", "+", "k", "+", "\[Mu]"]], ",", FractionBox[RowBox[List["1", "+", "x"]], "2"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "i"]], "+", "k", "+", "\[Mu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], RowBox[List["i", "-", "k", "-", "\[Mu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], ",", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "i", "-", "k", "-", "\[Mu]"]], ",", FractionBox[RowBox[List["1", "+", "x"]], "2"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "k"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["i", "-", "j"]], ")"]], "!"]], " ", RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "i"]], ")"]], "!"]]]]]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]], "&&", RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["x", ">", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02