Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,mu,2,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/07.08.06.0002.01









  


  










Input Form





LegendreP[\[Nu], \[Mu], 2, z] == (\[Mu]/2) Sum[(Pochhammer[-\[Nu], k] Pochhammer[\[Nu] + 1, k] Pochhammer[\[Mu]/2 + 1, m] Pochhammer[1 - \[Mu]/2, k]) Pochhammer[-\[Mu]/2, j] (-1)^(j + k) (z^(j + k + m + 1)/ (Pochhammer[2, m + k] Gamma[1 - \[Mu] + k] k! j! 2^k)), {k, 0, Infinity}, {m, 0, Infinity}, {j, 0, Infinity}] + Sum[(Pochhammer[-\[Nu], k + m] Pochhammer[\[Nu] + 1, k + m] Pochhammer[m - \[Mu]/2 + 1, k] Pochhammer[-\[Mu]/2, j] (-z)^(j + k))/ (Gamma[1 - \[Mu] + k + m] (k + m)! j! k! 2^(k + m)), {k, 0, Infinity}, {m, 0, Infinity}, {j, 0, Infinity}] /; Abs[z] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", "\[Mu]"]], "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["\[Mu]", "/", "2"]], "+", "1"]], ",", "m"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["\[Mu]", "/", "2"]]]], ",", "k"]], "]"]]]], ")"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Mu]"]], "/", "2"]], ",", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k"]]], RowBox[List[SuperscriptBox["z", RowBox[List["j", "+", "k", "+", "m", "+", "1"]]], "/", RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["2", ",", RowBox[List["m", "+", "k"]]]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]], RowBox[List["j", "!"]], SuperscriptBox["2", "k"]]], ")"]]]]]]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["k", "+", "m"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", RowBox[List["k", "+", "m"]]]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["m", "-", RowBox[List["\[Mu]", "/", "2"]], "+", "1"]], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[Mu]"]], "/", "2"]], ",", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["j", "+", "k"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k", "+", "m"]], "]"]], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "m"]], ")"]], "!"]], " ", RowBox[List["j", "!"]], RowBox[List["k", "!"]], SuperscriptBox["2", RowBox[List["k", "+", "m"]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;\[Mu]&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;m&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;\[Mu]&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Mu]&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;2&quot;, &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;m&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mi> k </mi> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;m&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;m&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;m&quot;, &quot;-&quot;, FractionBox[&quot;\[Mu]&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#956; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Mu]&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> </msup> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> m </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> j </ci> <ci> k </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <plus /> <ci> j </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Mu]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["\[Mu]", "2"], "+", "1"]], ",", "m"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", FractionBox["\[Mu]", "2"]]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["\[Mu]", "2"]]], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "k"]]], " ", SuperscriptBox["z", RowBox[List["j", "+", "k", "+", "m", "+", "1"]]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["2", ",", RowBox[List["m", "+", "k"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]], " ", RowBox[List["j", "!"]], " ", SuperscriptBox["2", "k"]]]]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["k", "+", "m"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", RowBox[List["k", "+", "m"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["m", "-", FractionBox["\[Mu]", "2"], "+", "1"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["\[Mu]", "2"]]], ",", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["j", "+", "k"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k", "+", "m"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "m"]], ")"]], "!"]], " ", RowBox[List["j", "!"]], " ", RowBox[List["k", "!"]], " ", SuperscriptBox["2", RowBox[List["k", "+", "m"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29