Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,mu,2,z] > Series representations > Generalized power series > Expansions at z==infinity





http://functions.wolfram.com/07.08.06.0028.01









  


  










Input Form





LegendreP[\[Nu], \[Mu], 2, z] == (1/Sqrt[Pi]) ((1 + z)^(\[Mu]/2)/ (1 - z)^(\[Mu]/2)) (((2^\[Nu] (z - 1)^\[Nu])/Gamma[1 - \[Mu] + \[Nu]]) Gamma[1/2 + \[Nu]] (1 + (\[Mu] - \[Nu])/(1 - z) + ((1 - \[Nu]) (\[Mu] - \[Nu]) (1 + \[Mu] - \[Nu]))/ ((1 - 2 \[Nu]) (1 - z)^2) + \[Ellipsis]) + ((2^(-1 - \[Nu]) (z - 1)^(-1 - \[Nu]))/Gamma[-\[Mu] - \[Nu]]) Gamma[-(1/2) - \[Nu]] (1 + (1 + \[Mu] + \[Nu])/(1 - z) + ((2 + \[Nu]) (1 + \[Mu] + \[Nu]) (2 + \[Mu] + \[Nu]))/ ((3 + 2 \[Nu]) (z - 1)^2) + \[Ellipsis])) /; Abs[(1 - z)/2] > 1 && !Element[2 \[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", SqrtBox["\[Pi]"]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Nu]"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[Mu]", "-", "\[Nu]"]], RowBox[List["1", "-", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "-", "\[Nu]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "2"], " "]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " "]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], RowBox[List["1", "-", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], ">", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List["2", "\[Nu]"]], ",", "Integers"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> &#956; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "\[Nu]"]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[Mu]", "-", "\[Nu]"]], RowBox[List["1", "-", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "-", "\[Nu]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], RowBox[List["1", "-", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]", "+", "\[Nu]"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Mu]"]], "-", "\[Nu]"]], "]"]]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], ">", "1"]], "&&", RowBox[List["!", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29