Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,mu,2,z] > Identities > Recurrence identities > Distant neighbors





http://functions.wolfram.com/07.08.17.0009.01









  


  










Input Form





LegendreP[\[Nu], \[Mu], 2, z] == Subscript[\[ScriptCapitalC], n][\[Nu], \[Mu], z] LegendreP[\[Nu] + n, \[Mu], 2, z] + ((-n - 1 + \[Mu] - \[Nu])/(n + \[Mu] + \[Nu])) Subscript[\[ScriptCapitalC], n - 1][\[Nu], \[Mu], z] LegendreP[\[Nu] + n + 1, \[Mu], 2, z] /; Subscript[\[ScriptCapitalC], 0][\[Nu], \[Mu], z] == 1 && Subscript[\[ScriptCapitalC], 1][\[Nu], \[Mu], z] == ((2 \[Nu] + 3) z)/(\[Nu] + \[Mu] + 1) && Subscript[\[ScriptCapitalC], n][\[Nu], \[Mu], z] == ((z (1 + 2 n + 2 \[Nu]))/(n + \[Mu] + \[Nu])) Subscript[\[ScriptCapitalC], n - 1][\[Nu], \[Mu], z] + ((-n + \[Mu] - \[Nu])/(n - 1 + \[Mu] + \[Nu])) Subscript[\[ScriptCapitalC], n - 2][\[Nu], \[Mu], z] && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Nu]", "+", "n"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "n"]], "-", "1", "+", "\[Mu]", "-", "\[Nu]"]], ")"]], " "]], RowBox[List["n", "+", "\[Mu]", "+", "\[Nu]"]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Nu]", "+", "n", "+", "1"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "0"], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "1"], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]], " ", "z"]], RowBox[List["\[Nu]", "+", "\[Mu]", "+", "1"]]]]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], RowBox[List["n", "+", "\[Mu]", "+", "\[Nu]"]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "n"]], "+", "\[Mu]", "-", "\[Nu]"]], RowBox[List[" ", RowBox[List["n", "-", "1", "+", "\[Mu]", "+", "\[Nu]"]]]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "2"]]], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]]]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> + </mo> <mi> n </mi> </mrow> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> &#957; </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msub> <mi> &#119966; </mi> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> <mo> - </mo> <mi> n </mi> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> &#119966; </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> &#956; </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreP </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <ci> n </ci> </apply> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <ci> n </ci> </apply> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> &#957; </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <cn type='integer'> 0 </cn> </apply> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <ci> n </ci> </apply> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <ci> &#956; </ci> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> &#119966; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </apply> <ci> &#957; </ci> <ci> &#956; </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Nu]", "+", "n"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "n"]], "-", "1", "+", "\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["\[Nu]", "+", "n", "+", "1"]], ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], RowBox[List["n", "+", "\[Mu]", "+", "\[Nu]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "0"], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "1"], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]], " ", "z"]], RowBox[List["\[Nu]", "+", "\[Mu]", "+", "1"]]]]], "&&", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]], RowBox[List["n", "+", "\[Mu]", "+", "\[Nu]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "n"]], "+", "\[Mu]", "-", "\[Nu]"]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "2"]]], "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "z"]], "]"]]]], RowBox[List["n", "-", "1", "+", "\[Mu]", "+", "\[Nu]"]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02