|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.08.20.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[LegendreP[\[Nu], \[Mu], 2, z], \[Nu]] ==
((1 + z)^(\[Mu]/2)/(1 - z)^(\[Mu]/2))
Sum[(1/(Gamma[1 - \[Mu] + k] k!)) ((1 - z)/2)^k
Sum[StirlingS1[k, j] \[Nu]^j Sum[(-1)^r StirlingS1[k, r]
(r/(1 + \[Nu]) + j/\[Nu]) (1 + \[Nu])^r, {r, 1, k}], {j, 1, k}],
{k, 0, Infinity}] /; Abs[(1 - z)/2] < 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "\[Nu]"], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k"]], "]"]], RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", "j"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["r", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], RowBox[List["-", "1"]]]]], "+", RowBox[List["j", " ", SuperscriptBox["\[Nu]", RowBox[List["-", "1"]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], "r"]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <mo> ∂ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <mi> ν </mi> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> j </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mi> j </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mo> ⁢ </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> j </mi> <mi> ν </mi> </mfrac> <mo> + </mo> <mfrac> <mi> r </mi> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> ν </ci> </bvar> <apply> <ci> LegendreP </ci> <ci> ν </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <power /> <ci> ν </ci> <ci> j </ci> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> r </ci> </apply> <apply> <plus /> <apply> <times /> <ci> j </ci> <apply> <power /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> r </ci> <apply> <power /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["\[Nu]_"]]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "k"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "j"]], "]"]], " ", SuperscriptBox["\[Nu]", "j"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "r"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox["r", RowBox[List["1", "+", "\[Nu]"]]], "+", FractionBox["j", "\[Nu]"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], "r"]]]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], "/;", RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,3,z] | |
|
|
|